Product Manual

CLASSIC® Series

Thermal Flow, Level, Interface & Temperature Switches & Transmitters

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using or maintaining this product.

For equipment service or support needs, please contact your local representative.

∕!\ CAUTION

The products described in this document are NOT designed for nuclear qualified applications.

Table of Contents

	CL	ASSIC® 800 Specifications	V
	Ove	erview of CLASSIC® Setup	. vii
1. I	NTR	ODUCTION	
	Мо	dels Described in this Manual	1
	CL	ASSIC® 800 Electronics	2
	Тур	pical Applications	2
	I.	THE KAYDEN CLASSIC 800 - DIGITAL ELECTRONICS FEATURES	3
	II.	PRINCIPLE OF OPERATION	4
	III.	THERMAL SIGNAL	5
	IV.	4-20 mA ANALOG OUTPUT	6
2. 11	ISTA	ALLATION GUIDELINES	
	I.	GENERAL	7
		Application Principles - Flow, Level, Interface & Temperature	8
	II.	APPLICATION CONSIDERATIONS	8
		Flow	8
		Level	9
		Interface	
		Temperature	
		ELECTRONICS LOCATION CONSIDERATIONS	
	III.	GUIDELINES FOR PIPE MOUNTING	
		Horizontal Pipe - Side Mount - Ideal	
		Horizontal Pipe - Top Mount	
		Horizontal Pipe - Bottom Mount	
		Vertical Pipe - Side Mount - Acceptable	
		Vertical Pipe - Side Mount - Downward Flow	
	11.7	Vertical Pipe - Top & Bottom Mount - Less Desirable	
		INSTALLING THE SENSOR	
	V.	LOCAL ENCLOSURE WIRING DIAGRAMS	
	۷١.	Wiring Connection Diagram - Local	
	\/11	. REMOTE ENCLOSURE WIRING DIAGRAMS & APPLICATIONS	
	V 11.	Interconnecting Cables for Remote Electronics	
		General-Purpose (Non-hazardous) Cable & Connector Assembly	
		Wiring Connection Diagram - Remote	
		Optional Wiring Methods for 4-20 mA Current Loop	
	VIII	I. TESTING THE INSTALLATION	

3. QUICK SETUP GUIDE	
Mechanical Installation	25
Sensor Orientation	25
Setup & Configuration Flow Chart	26
Display Panel Indicators	27
Display Panel Button Functions	27
Power AC/DC	28
Relay Outputs	28
Heater Power	28
4. SETUP & OPERATION	
Display Panel Indicators	
Display Panel Button Functions	29
I. GENERAL INFORMATION	30
II. CONTROL SETTINGS and SETUP PROCEDURES	30
View or Adjust Relay 1 & 2 Energized Mode	
Failsafe Relay Configurations	
2. View or Adjust 4-20 mA Fault Mode Configuration	30
3. View or Adjust Set Points 1 & 2	
4. View or Adjust Start-up Bypass Timer	
5. View or Adjust Heater Power	
6. View or Adjust Node Address & View the Software Revision	
7. View or Adjust 4-20 mA Output Configuration (Forward or Reve	erse Acting)38
8. View Bar Graph Lower Range Value (0%) and Upper Range Va	alue (100%)39
9. Adjust Bar Graph Lower Range Value (0%) and Upper Range V	Value (100%)40
Additional Setup Features using Kayden RCM Software via N	lodbus RTU4
Kayden Setting & Configuration Log Sheet	42
5. MODBUS RTU INTERFACE	
1. Modbus History	43
2. Modbus Implementation	43
3. Node Address	43
4. Function Codes	43
5. Coils	44
6. Holding Registers	44
6. MAINTENANCE	
1. Cover	
2. Process and Conduit Connections	
3. Sensing Elements	
4. Electronics Module	49
5. Adjustment & Calibration	
6. Preventative Maintenance w/ RCM Software	49

7. TROUBLESHOOTING	
1. LED Fault Indicator	51
2. LED Fault Codes	51
3. Fault Check List	57
4. Restore Operation After a Fault	57
Options for Clearing a Fault	57
5. How to Perform a Factory Reset	58
6. How to Check the Sensor	58
7. Return of Material	59
8. Hazardous Materials	59
9. Service, Technical Support & Contact Information	59
8. GLOSSARY	60
APPENDIX A - OUTLINE DIMENSIONAL DRAWING	
CLASSIC® 810 Threaded	64
CLASSIC® 812 Flanged	64
CLASSIC® 814 Retractable Packing Gland Flanged - to 50 psi	65
CLASSIC® 814 Retractable Packing Gland Threaded - to 125 psi	65
CLASSIC® 816 Retractable Packing Gland Threaded - 1" MNPT - to 50 psi	66
CLASSIC® 816 Retractable Packing Gland Threaded - 1" MNPT - c/w Chain - to 125 psi	66
CLASSIC® 816 Retractable Packing Gland Threaded - 1" MNPT - to 500 psi	66
CLASSIC® 830 InLine Threaded - Horizontal	67
CLASSIC® 830 InLine Threaded - Vertical	67
CLASSIC® 832 InLine Flanged - Horizontal	68
CLASSIC® 832 InLine Flanged - Vertical	68
Remote Electronics Enclosure - Flameproof - CSA	68
APPENDIX B - MODEL NUMBER LEGENDS	
ORDER LEGENDS	
CLASSIC® 810 Threaded	71
CLASSIC® 812 Flanged	72
CLASSIC® 814 Flanged Retractable Packing Gland	73
CLASSIC® 816 Threaded Retractable Packing Gland	74
CLASSIC® 830 In-Line Threaded	75
CLASSIC® 832 In-Line Flanged	76
APPENDIX C - KAYDEN.COM WEB SITE	77
APPENDIX E - RCM SOFTWARE INSTALLATION & USE	78
CONTACT US, DISTRIBUTORS AND ORDERING INFORMATION	93

KAYDEN | Table of Figures & Tables

TABLE OF FIGURES

	Figure 1 - CLASSIC® 800 Display Panel	2
	Figure 2 - CLASSIC® 800 Probe & Outputs	4
	Figure 3 - Thermal Signal vs. Velocity in Glycol	5
	Figure 4 - Thermal Signal Dry vs. Submerged	5
	Figure 5 - Thermal Signal Submerged vs. Dry	6
	Figure 6 - Thermal Signal in Alternate Fluids	6
	Figure 7 - Pump Flow Detection	7
	Figure 8 - Insertion 'U' Length - Flanged	11
	Figure 9 - Insertion 'U' Length	11
	Figure 10a - Horizontal Pipe, Side Mounting	11
	Figure 10b - Horizontal Pipe - Top/Bottom Mounting	11
	Figure 11 - Vertical Pipe - Flow Up & Down	12
	Figure 12 - Horizontal Pipe - Sensor Positioning	12
	Figure 13 - Sensor Orientation for Horizontal Flow & Level	13
	Figure 14 - Disconnecting Sensor Connector from Electronics Module	15
	Figure 15 - CLASSIC 800 Electronics Module Terminal Wiring Diagram	17
	Figure 16 - CSA Remote Mounted Electronics	18
	Figure 17 - A06-XP Remote Cable and Connector Specifications Drawing	20
	Figure 18 - CLASSIC 800 Wiring Diagram - Remote Electronics	21
	Figure 19 - DC Powered CLASSIC, 4-Wire External Loop Power - Current Sinking	22
	Figure 20 - DC Powered CLASSIC, 3-Wire Internal Loop Power - Current Sourcing	22
	Figure 21 - AC Powered CLASSIC, 4-Wire External Loop Power - Current Sinking	23
	Figure 22 - Relay Energized Mode	31
	Figure 23 - 4-20 mA Fault Mode Configuration	33
	Figure 24 - Set Point 1 & 2 Configuration	34
	Figure 25 - Start-up Bypass Timer	35
	Figure 26 - Setting the Heater Power	36
	Figure 27 - Software Revision & Node (Unit) Number	37
	Figure 28 - 4-20 mA & 20-4 mA Output Mode	38
	Figure 29 - Maximum Range of Lower Range Value (LRV) & Upper Range Value (URV)	39
	Figure 30 - Scaled Bar Graph View vs. Unscaled Bar Graph View	39
	Figure 31 - Setting the Scaled Thermal Signal Lower Range Value (LRV)	40
	Figure 32 - Setting the Scaled Thermal Signal Upper Range Value (URV)	40
	Figure 33 - Kayden CLASSIC Exploded View	48
	Figure 34 - Display Panel Indicators	50
	Figure 35 - Fault Cycle Display Example	51
	Figure 36 - Checking Sensor Resistances	58
TAE	BLE OF TABLES	
	Table 1 - Modbus Address Binary Table	43
	Table 2 - CLASSIC® Modbus Function Codes	
	Table 3 - Coils	
	Table 4 - Low Holding Registers (Configuration and Status)	
	Table 5 - High Holding Registers (Run-Time Variables)	

CLASSIC® 800 Specifications

Applications

Flow, Level, Interface & Temperature

Process Connections

- 1/2", 3/4", 1", 1-1/4", 1-1/2" & 2" MNPT
- 3/4" FNPT & Flanged InLine
- Threaded (1" MNPT) & Flanged Retractable Packing Glands

Insertion 'U' Lengths

Imperial

1.2", 2", 3", 4", 6", 9", 12" & 18" standard

Metric

 $3, 5, 7.5, 10,15, 23, 30 \& 45 \ cm \ standard$

Custom Lengths

Available in 1/2" or 1 cm increments Min. 2.5" - Max. 120" (6.0 - 305 cm) model dependant

Wetted Materials

- 316/316L Stainless Steel standard
- Titanium Gr. 2, Hastelloy C-276
- 316/316L Stainless Steel c/w Nickel Braze (830 & 832 InLine Models)

Enclosure Material

- Copper-free Aluminum (does not exceed 0.4% copper)
- Powder Coated Polyester TGIC (polyester triglycidyl isocyanurate)
- NEMA 4, 4X, 6P; IP65/67
- 1" FNPT Conduit Connection
- · Buna O-Ring on Cover

Temperature Range – Continuous Service

Sensors

-55°C to +200°C (-58°F to +392°F) (Models 814 & 816: -55°C to +160°C [-58°F to +320°F])

Electronics

-55°C to +65°C (-67°F to +149°F)

Note: For temperatures above +65°C (+149°F) electronics must be remotely mounted. Refer to Electronics Location Considerations Page 10.

Storage

Product should be stored in a clean and dry environment between -30°C and +60° C (-34.5°F and 140° F)

Operating Pressure - Sensor

Threaded Style

 Maximum Working Pressure 24 MPa (3500 psig) dependent on model and material of construction

Flanged Style

 Maximum Working Pressure per flange rating

Switch Point Range (Insertion Style - 1/2" to 2"MNPT, Flanged)

 Water-based Liquids 0.01 to 3.0 ft./sec. (0.003 to 0.9 meters/sec.)

 Hydrocarbon-based Liquids 0.01 to 5.0 ft./sec. (0.003 to 1.5 meters/sec.)

Gases

0.25 to 254 sfps (0.076 to 77 smps) Standard conditions: 21°C (70°F) at 14.7 psi (1 atm)

Switch Point Range (InLine Style)

 Water-based Liquids 0.015 to 50 cc/sec.

 Hydrocarbon-based Liquids 0.033 to 110 cc/sec.

Gases

0.6 to 20,000 cc/sec. Standard conditions: 21°C (70°F) at 14.7 psi (1 atm)

Accuracy

Flow Service

±1% set point velocity over operating range of ±28°C (±50°F)

Level Service

±0.25 inches (±0.64 cm)

Repeatability

±0.5% Thermal Signal

Hysteresis (Dead Band)

±1% Thermal Signal

Temperature

±1° C or ±2% of full-scale range, whichever is greater.

Response Time

Approximately 0.5 to 30 seconds

Remote Electronics Option

- Maximum recommended cable length -200 feet (60 m)
- Cable type 24 AWG minimum twisted pairs

Heater Power

Field adjustable to optimize performance

Input Power

- Universal Power standard 12-24 VDC and 115-230 VAC, 50-60 Hz
- Consumption Maximum 6.0 Watts
- · DC input has reverse polarity protection
- AC & DC inputs have TVS diodes to protect against transient voltages (390 VAC, 39 VDC)
- Internal 1A self-resettable non-user-replaceable fuse

Outputs

- 4-20 mA current loop (with reverse voltage protection)
- Two (2) independent SPDT fully sealed relay contacts rated @ 4 amps resistive 230 VAC or 30 VDC Max.; individually adjustable

Start-Up Bypass Timer

Adjustable: 0 to 100 seconds

Communications

Modbus RTU via RS-485

Additional Features (Configure Using Kayden RCM Software or Modbus)

- Display Panel Lock-Out
- Set Points Configuration¹
- · Relay Actuation Delay Timer
 - Independently configurable for both On and Off, increasing or decreasing
 - Adjustable from 0 5000 seconds
- Start-up Bypass Timer¹
 - Adjustable from 0 100 seconds
- Relay Mode Configuration¹
 - Energized above or below set point
- Relay Temperature Switch Configuration
- Heater Power setting¹

- Lower and Upper Range Values (LRV & URV) settings1
- Analog (4-20 mA) output configuration¹
- View and Print Graphing (Trend) function
- Configuring settings; write to device, save to file and print
- Fault Event Log

Diagnostics

- Primary watchdog circuit monitors microprocessor parameter for anomalies
- Secondary watchdog circuit monitors microprocessor health
- · Heater monitored for out-of-range conditions
- Fault Mode de-energizes relay(s) and halts power to the heater

Agency Approvals

CSA

Class I, Div. 1, Groups B, C and D; Ex d IIB + H2; AEx d IIB+H2 (Class I, Zone 1, Group IIB + H2,) T3; Enclosure Type 4 / IP55

Canadian Registration Number

- Single Seal Approval Per ANSI/ISA 12.27.01-2003
- · CRN Canadian Registration Number
 - CLASSIC 810: 0F22124.2C
 - CLASSIC 812:
 - 1" & 1-1/2": 0F13787.2C
 - 2" to 10": 0F13773.2C

Note: Visit kayden.com for CRN specifics.

Factory Certifications

• Factory tested to NEMA 4, 4X, 6P; IP65/67. Contact Technical Support for reports.

Weights and Dimensions

- 810 Threaded 2" U length 7 lbs (3.18 kg)
- Carton Size 15" x 5" x 6" (38 cm x 13 cm x 15
- Other models/sizes consult Kayden

Warranty

· One (1) Year from shipment date from factory (see Terms & Conditions on kayden.com for details)

Note: 1 Also configurable from Display Panel

Overview of CLASSIC Setup

1. Warm-Up

At initial start-up or restart, please allow approximately 90 seconds for the heater element to warm-up and the switch to stabilize before making any adjustments.

2. Primary Settings

The following are the basic configurations for the CLASSIC 800 Series Electronics Modules:

- 1. Relay 1
- 2. Relay 2
- 3. Set Point 1
- 4. Set Point 2
- 5. Heater Power
- 6. LRV and URV (0% and 100%)

3. Secondary Settings

The following are the additional configurations:

- 1. 4-20 mA Fault Configuration
- 2. Start-up Bypass Timer
- 3. Node Address & Software Revision
- 4. 4-20 mA Configuration

Notes	

Notes

1

Introduction

Models in this Manual

CLASSIC 810 Threaded

Insertion Style - 1/2", 3/4", 1", 1-1/4", 1-1/2" & 2" MNPT

CLASSIC 812 Flanged

Insertion Style - 1" ANSI 150 through 10" ANSI 900 Flanges

CLASSIC 814 Flanged Retractable Packing Gland

Insertion Style - 1-1/2" through 10" ANSI 150 Flanges

CLASSIC 816 Threaded Retractable Packing Gland

Insertion Style - 1" MNPT

CLASSIC 830 Threaded

InLine Style - 3/4" FNPT

CLASSIC 832 Flanged

InLine Style - 3/4" ANSI 150 through 10" ANSI 900 Flanges

CLASSIC® 800 Electronics

Display Panel & User Interface

The Kayden CLASSIC 800 Series Electronics Module is designed to be easy to install and adjust while displaying several control functions. The Kayden CLASSIC 800 Series Electronics Module features:

- Universal Power Input
- Continuous Self-test Diagnostics with Fault Indicator
- · Easy setup; no jumpers or trim pots
- Incrementally adjustable heater power, range and relay set points.
- All CLASSIC 800 series switches/transmitters use the same 800 Series Electronics Module making it a
 universal spare part. The Electronics Module is easily installed in the field without returning the entire switch/
 transmitter to the factory.

Figure 1 - CLASSIC 800 Display Panel

Display Panel Indicators

Relay 1	On steady when Relay 1 is energized
Relay 2	On steady when Relay 2 is energized
Fault	Indicates a self-test error or fault condition
Set Point 1	On steady when viewing Set Point 1
Set Point 2	On steady when viewing Set Point 2
Run Mode	Flashing when switch is operating
Bypass	Flashing when the Start-up Bypass Timer is active
Thermal Signal	Displays Thermal Signal

4-20 mA Analog Output

Start-up Bypass Timer

The Thermal Signal increases as

Flow The flow rate increases

Level The sensor is submerged

Interface The sensor is submerged by the second liquid of

greater thermal conductivity

Typical Applications

- Pump Protection Dry Alarm
- Leak Detection
- Flow Monitoring & Verification
- Tank Overflow Protection
- Flare Gas Monitoring
- Monitoring Purge Air Flow
- Drain Line Flow
- Interface Control in Separation Vessels
- High Pressure Flows

- Lube Oil Systems
- Vent Monitoring
- Natural Gas to Boilers
- Emergency Eye Wash Stations
- Tanker Loading & Unloading
- Relief Valve & Rupture Disk Flow Monitoring
- Remote Indication of Flow via Analog Output & Digital Communications
- Liquids, Air & Gases

- Slurries
- Interface Detection
- Corrosive Liquids
- Hazardous & General-Purpose Areas
- Interface Control & Level Detection in Settling Vessels
- Chemical Injection/Additive Flow Monitoring

I. THE KAYDEN CLASSIC 800 - DIGITAL ELECTRONICS FEATURES

The CLASSIC 800 is versatile, rugged, cost effective and easy to use. All basic configurations can be performed using the Display Panel buttons, although additional configurations may require using Kayden RCM Software (or the Modbus interface).

The CLASSIC 800's Display Panel displays process condition (flow, level & interface) via the Thermal Signal Bar Graph as well as Relay state, Timer functions and operating conditions via individual LEDs.

The CLASSIC 800 may also be remotely controlled and/or monitored via RS-485 using Kayden RCM (Remote Control & Monitoring) Software with a suitable RS-485 communication adapter and cable.

Kayden's CLASSIC 800 series uses an advanced microprocessor to perform continuous self-test diagnostics on the Electronics Module and the sensor elements.

- Any open or shorted connection will result in an error indication that also opens all output contacts and disables the heater circuitry.
- A internal watchdog circuit in the microprocessor ensures the microprocessor program code is executing correctly, and an external watchdog circuit ensures the microprocessor itself is functioning correctly. Both circuits force the contacts open, turn the Fault LED ON, turn the heater off, and de-energize the relays in the event of a malfunction. This prevents the heater from running out-of-control, which could result in excessive probe temperatures or damage to the heater.
- The microprocessor also monitors the heater for out-of-range conditions. For example, in a level application when the sensor is "dry" for an extended period of time, the heater will cycle between its current setting and a lower power rating until such time as the sensor is again submerged.

Note: A configuration change could result in one or both relays energizing or de-energizing when normal operation is resumed.

The CLASSIC 800 includes a number of circuit protection features:

- Reverse polarity protection on the 12-24 VDC power input and 4-20 mA analog output.
- Transient-voltage suppression on 12-24 VDC and 115-230 VAC power inputs to protect against voltage spikes (TVS) diodes.
- Self-resettable non-user-replaceable fuse.

II. PRINCIPLE OF OPERATION

The Kayden CLASSIC sensor probe incorporates two RTDs and a heating element.

Figure 2 - CLASSIC 800 Probe & Outputs

III. THERMAL SIGNAL

Thermal Signal as it Applies to Flow, Level, and Interface

The CLASSIC 800 may be set up in the field for flow, level or interface with air, gases, liquids, or slurries. The CLASSIC 800 Local Thermal Signal Bar Graph display implies a range of flow detection from 0 to 100%.

If the LED bar graph indicates 0% then a minimum amount of heat is being carried away by the process.

If the LED bar graph indicates 100%, then a maximum amount of heat is being carried away by the process.

The Thermal Signal is continuously compared against the Relay Set Points and the relays are energized or deenergized appropriately.

Flow / No Flow

The Thermal Signal increases as the FLOW increases.

When the velocity of the process media is low or nonexistent, less thermal energy (heat) is dissipated from the heated sensor.

As the velocity increases, the amount of energy dissipated by the process media increases, thereby increasing the Thermal Signal.

The Thermal Signal is smallest (left-most LED illuminated) in a no-flow state and increases (LED moves to the right) as flow increases.

The relationship between Thermal Signal and velocity is Non-Linear.

The following figure is a typical flow curve showing Thermal Signal (heat loss) vs Velocity in glycol.

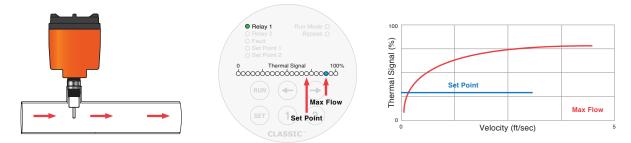


Figure 3 - Thermal Signal vs Velocity in Glycol

Level

The Thermal Signal increases when the sensor is submerged in a fluid.

Air and other gases have low thermal conductivity and do not dissipate heat as well as liquids.

Therefore the Thermal Signal is smallest in air or gas. The Thermal Signal increases as the sensor is submerged. The Thermal Signal is lower (left-most LED illuminated) in a dry motionless state and increases once the sensor is submerged in fluid. (see Figure 4).

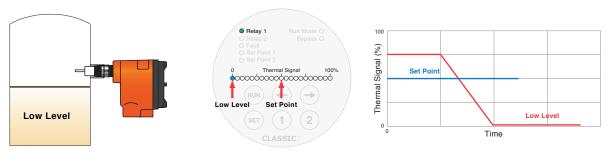


Figure 4 - Thermal Signal Dry vs Submerged

The Thermal Signal is **higher** (right-most LED illuminated) when the **sensor is submerged in a fluid** and decreases when the sensor is **exposed to air or gas in a motionless state** (see Figure 5).

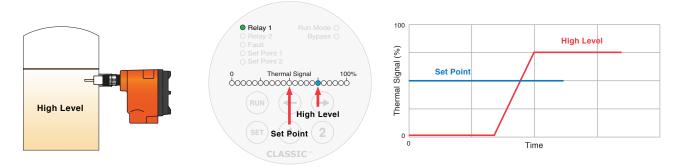


Figure 5 - Thermal Signal Submerged vs Dry

Interface

The Thermal Signal **changes** as the (interface) sensor is exposed to an **alternate fluid** which has a different rate of **thermal conductivity**.

The CLASSIC 800 can be set up to detect the difference between most liquids when:

- The different rate of the thermo-conductivity of the two fluids is large enough to detect.
- There is little or no velocity, and the process media is in a stable, motionless state.

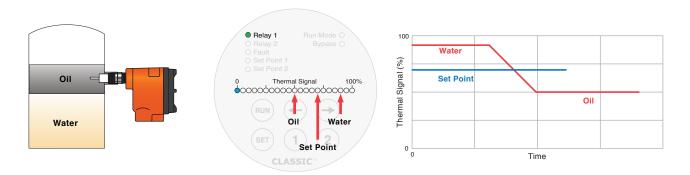


Figure 6 - Thermal Signal in Alternate Fluids

IV. 4-20 mA ANALOG OUTPUT

The 4-20 mA analog output signal corresponds to the Thermal Signal LED Bar Graph.

- The 4-20 mA signal may be displayed either as forward-acting (ascending 4-20 mA) or reverse-acting (descending 20-4 mA).
- The 4-20 output can be configured to output either 3 mA (LOW) or 21 mA (HIGH) in a fault condition (NAMUR NE 43).
- When the CLASSIC is in Set Mode, the 4-20 mA Output is disabled and will default to LOW or HIGH.

Refer to the Section 3, "View or Adjust the 4-20 mA Output Configuration (Forward or Reverse)" or the Classic 800 Series Quick Setup Guide.

2

Installation Guidelines

I. GENERAL

Kayden electronics are designed to be universal for flow, level, interface and temperature applications and with most liquids, gases and slurries. Ensure:

- Correct setup of the electronics and,
- Proper physical installation of the sensor.

Location

- Consider the need for easy access in order to view the operation and make any required field adjustments.
- Provide at least 12 inches (30 cm) clearance if possible to allow access for setup and viewing after installation.

Shock and Vibration

 Install the switch/transmitter so as to minimize any effects due to vibration, shock and extreme temperatures.

Temperature

- The continuous operating temperature limits of the Electronics Module is -55°C to +65°C (-67°F to +149°F). Ambient temperatures in excess of +65°C (+149°F) require the electronics to be mounted remotely from the sensor. Consult kayden.com or the factory for more information.
- The continuous operating temperature limits of the sensors are -45°C to +200°C (-50°F to +392°F).

Turbulence / Interference

- Pumps, fans, valves, or pipe bends of 90° or more will cause turbulence or significant variance in the flow which will affect the repeatability of the switch. Care should be taken to minimize this possibility.
- For Pump Flow/No-Flow detection, the CLASSIC can be mounted on either the inlet or the discharge side of the pump (the best linear response will be on the inlet side). If the CLASSIC must be mounted on the discharge side, a straight run before the CLASSIC of at least 5 times the pipe bore diameter is recommended.
- Keep the sensor away from any devices that may cause physical damage such as: agitators, valves, injectors, etc.

Note: Many times, especially when replacing a different type of instrument, the installation point is predetermined and is difficult to change. Kayden switches have specific design features that enable them to perform well even in difficult locations and applications. Please consult your local representative or Kayden for questions or installation / setup recommendations.

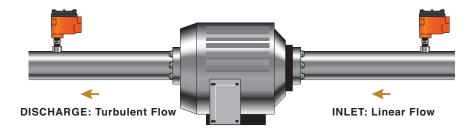
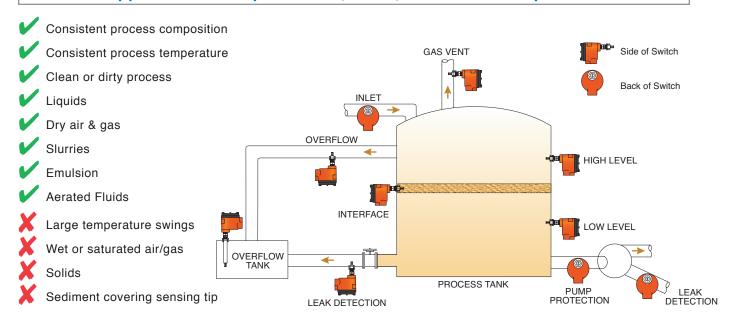



Figure 7 - Pump Flow Detection

Application Principles - Flow, Level, Interface & Temperature

Application Considerations - Flow

Ideal Process Conditions

Liquids

- · Consistent process composition & temperature
- Sufficient straight run flow profile (minimizes turbulence)
- Recommended minimum of 5 pipe diameters from any disturbance, preferably 15 pipe diameters.

Air & Gas

- Consistent process composition and temperature, ideally clean and dry but not necessarily so long as process is consistent.
- Sufficient straight run flow profile (minimizes turbulence)
- Recommended minimum of 5 pipe diameters from any disturbance, preferably 15 pipe diameters.

Slurries

- · Consistent process composition & temperature
- Sufficient straight run flow profile (minimizes turbulence)
- Recommended minimum of 5 pipe diameters from any disturbance, preferably 15 pipe diameters.

Emulsion

- · Consistent process composition & temperature
- Sufficient straight run flow profile (minimizes turbulence)
- Recommended minimum of 5 pipe diameters from any disturbance, preferably 15 pipe diameters.

Undesirable Process Conditions

Liquids

- Inconsistent process composition or temperature
- Insufficient straight run
- Turbulence

Air & Gas

- Inconsistent process composition or temperature
- Wet or saturated air/gas

Slurries

- Inconsistent process composition or temperature
- · Insufficient straight run
- Turbulence

Emulsion

- Inconsistent process composition & temperature
- · Insufficient straight run
- Turbulence

Solids

 Dry granulated processes are NOT good candidates for thermal switches

Application Considerations - Level

Ideal Process Conditions

Liquids

- · Consistent process composition & temperature
- Non-turbulent applications

Slurries

Consistent process composition & temperature

Emulsion

Consistent process composition & temperature

Undesirable Process Conditions

Liquids

- · Inconsistent process composition
- Turbulence
- · Large temperature swings

Slurries

- Inconsistent process composition
- Turbulence
- · Large temperature swings

Emulsion

- Inconsistent process composition
- Turbulence
- · Large temperature swings

Solids

· Dry granulated processes are NOT good candidates for thermal switches

Application Considerations - Interface

Ideal Process Conditions

Liquids

- Liquid to Liquid
- Consistent process composition & temperature
- · Non-turbulent applications
- · Large differential in thermal conductivities

Air or Gas to Liquid

- Consistent process composition & temperature
- Non-turbulent applications
- Dry gas

Emulsion

- · Consistent process composition & temperature
- · Large differential in thermal conductivities

Undesirable Process Conditions

Liquid to Liquid

- · Inconsistent process composition or temperature
- High aeration
- High turbulence
- · Small differential in thermal conductivities

Air or Gas to Liquid

- Inconsistent process composition or temperature
- High turbulence

Emulsion

- · Inconsistent process composition or temperature
- High aeration
- High turbulence
- Small differential in thermal conductivities

Solids

 Dry granulated processes are NOT good candidates for thermal switches

Application Considerations - Temperature

Ideal Process Conditions

Undesirable Process Conditions

Consistent Processes

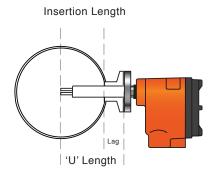
Process Temperature < -55°C or > +200°C

Process Temperature -55°C to +200°C

Note: See Additional Setup Features on Page 41 to configure relays to respond to temperature.

II. ELECTRONICS LOCATION CONSIDERATIONS

A remote electronics enclosure is required when ambient temperatures near the sensor exceed 65°C (149°F) where the electronics will be mounted. The combination of several factors relative to temperature should be considered when mounting the switch/transmitter:


- A. High temperatures of the process material, which may over time, become a convective heat source.
- B. High ambient temperature, which may prevent the surrounding air from cooling or insulating the electronics.
- C. Radiant heat, if the switch is installed in direct sun in a hot climate, or near a heat source.
- D. Mechanical features of the installation such as pipe insulation, heat sinks, cooling fans, etc.

III. GUIDELINES FOR PIPE MOUNTING

The CLASSIC 800 is a flow, point level, interface and temperature sensing device. The sensor tip must be inserted in the proper location and to the proper depth in order to accurately react to your process conditions. The following information, including Figures 8 through 13, should be considered as text book examples for proper installation.

Notes: Most pipe connections for instrumentation are a variation of a butt-weld-type such as the Weldolet or Thredolet. The length of this connection must be added to the pipe diameter when determining the required insertion length for the sensor. The Kayden literature refers to this "insertion length" dimension as the "U" length, Figures 8 & 9.

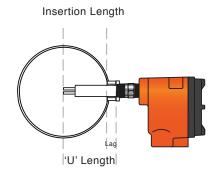


Figure 8 - Insertion 'U' Length (Flanged)

Figure 9 - Insertion 'U' Length

Horizontal Pipe - Side Mount - Ideal

As shown in Figure 10a, ensure the sensing tip is inserted to a point between 5% and 75% of the inside diameter of the pipe. Avoid locations where sediment may accumulate and isolate the sensing tip from the process.

Horizontal Pipe - Top Mount

Gas will always collect at the top of any pipe, ensure sensing tip is inserted to a point where it will be constantly and fully exposed to the desired process media.

Horizontal Pipe - Bottom Mount

Because sediment will collect at the bottom of any pipe, ensure sensing tip is inserted to a point where it will be constantly and fully exposed to the desired process media. Avoid locations where sediment may accumulate and eventually isolate the sensing tip from the process.

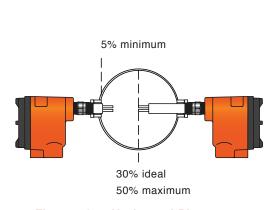
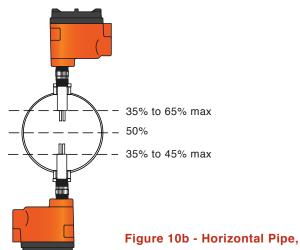



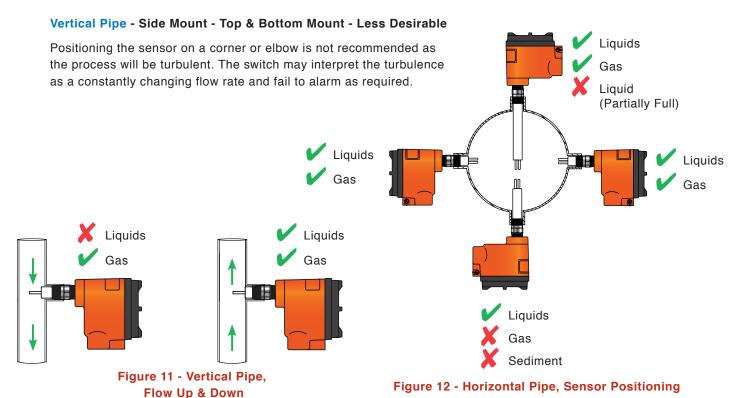
Figure 10a - Horizontal Pipe, **Side Mounting**

Top / Bottom Mounting

Vertical Pipe

For vertical pipe mounting, Kayden strongly recommends installing the switch at a point of UPWARD process flow to ensure continued total immersion of the sensing tip.

If there is no other option except to install the flow switch in a vertical pipe with downward flow, the following information must be considered:


- A "waterfall effect" may occur in vertical pipe with low flow rates. The process may become substantially aerated and will therefore cause the switch to interpret the aeration as a lower flow rate (see Figure 11).
- The line should be full of the liquid/slurry at all times.
- The switch/transmitter must be far enough from an open outlet that air cavitation does not extend to the sensing tip and cause a false flow signal. A constriction at the outlet helps avoid this problem.

Vertical Pipe - Side Mount - Acceptable

- Ensure sensing tip is fully inside the pipe wall as a minimum and to the center of the pipe as a maximum.
- When installing the switch in vertical piping, Kayden strongly recommends installing the switch/ transmitter at a point of UPWARD process flow to ensure continued total immersion of the sensing tip.

Vertical Pipe - Side Mount - Downward Flow

- Is only recommended for higher flow rates where the LINE IS KEPT FULL OF LIQUID OR SLURRY.
- For installation in a vertical gravity flow, the switch must be distant enough from an open outlet that air cavitation does not affect the sensing tip and cause a false flow signal. A constriction at the outlet helps avoid this problem.
- · A waterfall effect will occur in vertical pipe with low flow rates. Also, the process is likely to become substantially aerated. The switch will interpret the aeration as a substantially lower flow rate and possibly cause a false low flow alarm.

IV. INSTALLING THE SENSOR

Having followed the installation guidelines in Section 2, "Installation Guidelines", Subheadings I through III, you may now proceed with installation.

CAUTION

- 1. Use proper eye protection and any other safety equipment as required by your installation site.
- 2. Check electrical power to ensure that all power has been disconnected and 'locked out'.
- 3. Ensure the process tank and/or line pressures are 'zero'.
- 4. Ensure that steam, hot water, acids or any other potentially hazardous media will not be released.
- Follow all safety precautions as specified for your installation site and/or local codes.

1. Process Connections

- Threads: Coat with a thin layer of thread tape or sealant/lubricant. Do not overtighten threads when installing.
- Flanges: To ensure a correct seal on mating flanges, mount and tighten flanges according to ANSI standards.

2. Sensor Orientation

To optimize the sensor's performance, ensure the sensor is positioned as outlined below. As shown in Figure 13, ensure the arrows etched on the sensor flats (<>>) are oriented parallel to the process flow. Blue arrows indicate the acceptable directions of the flow.

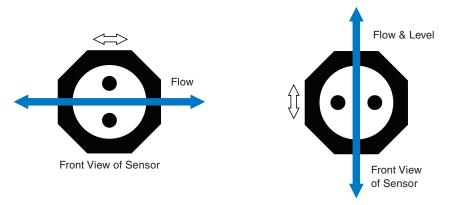


Figure 13 - Sensor Orientation for Horizontal Flow & Level

Notes: 1. Liquids & Slurries: When mounted in a tee or section of pipe larger than the normal process pipe, position sensor at a sufficient insertion point so as to avoid contact with any air or gas bubbles that occur in the larger section of pipe.

2. Avoid locations where sediment may accumulate and eventually isolate the sensing tip from the process. Sediment covering the sensor tip may prevent the switch from being able to sense any changes in the process as the sediment will insulate the sensing tip.

V. ELECTRICAL 1. General

Ensure all electrical installation is in accordance with all applicable local and national electrical code requirements. The CLASSIC 800 series standard configuration includes an explosion-proof enclosure. The CLASSIC 800 Series is approved by the Canadian Standards Association (CSA) and must be installed in accordance with applicable codes and standards..

- Power Supply: For applications using a DC power supply, ensure the power has less than 2% ripple.
- Switch/Transmitter Enclosure: The switch enclosure must be grounded in accordance with local and national electrical codes. The most effective grounding method is a direct internal connection to earth ground with minimal impedance. The (green) Internal Ground Connection screw is located inside the electrical enclosure and is identified by the universal ground symbol.

CAUTION

- 1. Mount the enclosure so that moisture/liquids will not enter the switch enclosure. If conduit connections are not sealed, moisture accumulation can damage the switch/transmitter.
- 2. Grounding the switch/enclosure via threaded conduit connection may not provide sufficient ground continuity.
- 3. Do not run the transient protection ground wire in the same conduit as the signal wiring as the ground wire may carry excessive current if a lightning strike occurs.

2. Wiring Connections to the Switch

To make the electrical connections to the CLASSIC 800, it is necessary to remove the Electronics Module as follows:

A. Remove the Cover

 Turn the external stainless steel locking screw clockwise with a 5/32" (#10) Allen Key and turn the cover counter clockwise until it can be lifted off the enclosure.

B. Remove the Electronics Module

- To remove the Electronics Module, pull outward with an equal force on both stainless steel handles. Care should be taken to avoid damaging the sensor cable attached to the Electronics Module.
- Practice ESD (electrostatic discharge) procedures when handling the Electronics Module. Electrostatic discharge may damage the electronics! Never place the Electronics Module on a surface or pass it to another person in a way that would allow an electrostatic discharge to pass through it.

C. Removing the Sensor Connector from the Electronics Module

- Refer to Figure 14.
- The Electronics Module must be removed from the enclosure before any wiring can be connected to the Mounting Base Plate. Disconnect the sensor connector from the Electronics Module by disengaging the locking tab and pulling (with fingers) on the corners of the small black connector. Do not pull directly on the wires. The use of pliers may damage the connector.

Figure 14 - Disconnecting Sensor Connector from the Electronics Module

Input Power Connections

The CLASSIC 800 will accept 12-24 VDC or 115-230 VAC input power via the universal power supply by wiring the Electronics Module according to input power available.

- For AC power, connect the HOT line to VAC-H, the NEUTRAL to VAC-N and the GROUND wire to the green grounding screw in the enclosure, also indicated by the ground symbol.
- For DC Power, connect the positive voltage to +VDC and the common or negative to COM. (see Figure 15 & 16)

Wiring the Relay Contacts

 The CLASSIC 800 features two (2) fully sealed independent relays, which may be wired for Normally Closed (NC) or Normally Open (NO) operation. Relay 1/Relay 2 are connected as shown in Figure 15.

Wiring the 4-20 mA Analog Output

• The CLASSIC 800 features a fully isolated 4-20 mA Analog Output, which can be wired in a 3-Wire or 4-Wire configuration as shown in Figures 19, 20, and 21.

Wiring RS-485 Interface

The RS-485 remote communications port is connected as follows:

- The common ground reference used on some 3-wire half-duplex systems. While no current should pass through this conductor, it should not be used as a shield. If using a shield it should only be connected to ground at one point, usually at the PLC or computer.
- **485 (A-)** The A or negative data line.
- 485 (B+) The B or positive data line.
- This pin provides an AC coupled terminator of 120 ohms when shorted to 485 (A-). This feature eliminates the need to add an external terminator. It is AC coupled to reduce power consumption when the 485 bus is idle. For more details on AC vs. DC termination of RS-485 networks, contact Kayden Technical Support at kayden.com.

Notes: For more information see Figures 15 & 16.

KAYDEN Installation Guidelines

Replacing the Electronics Module in the Enclosure

Repeat steps 2B and 2C in reverse order. The cable from the sensor to the Electronics Module should be gently positioned between the outside of the Mounting Base Plate with green & black connectors and the inside of the enclosure. If the excess length of the cable interferes with the mounting of the Electronics Module then gently rotate the Electronics Module one full turn to put a twist in the sensor cable.

- There is no surplus room in the enclosure for excessively long wires.
- Use a quality data communications cable for all non-power connections (RS-485). Ensure that the shield is sufficient to allow the cable to coexist with the power connections. Consult your local electrical code for requirements.
- All wires must be kept free and clear of the green & black mounting connectors on the Mounting Base Plate to prevent interference with the mounting of the Electronics Module.
- Treat the Electronics Module and sensor cable with care. While the CLASSIC 800 is a rugged unit, these assemblies can be damaged if mishandled.

VI. LOCAL ENCLOSURE WIRING DIAGRAMS

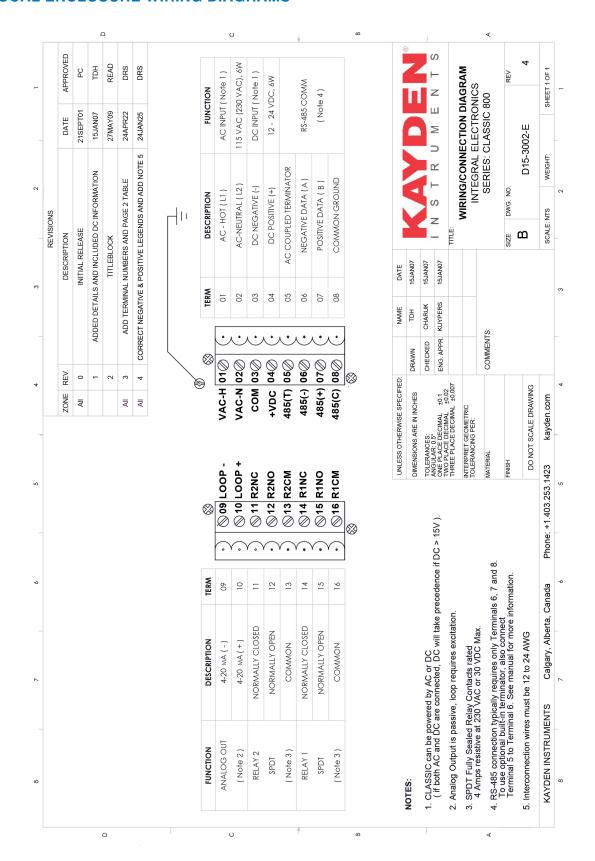


Figure 15 - CLASSIC 800 Electronics Module Terminal Wiring Diagram

VII. REMOTE ENCLOSURE WIRING DIAGRAMS & APPLICATIONS

A CLASSIC 800 Remote Enclosure should be used in three application circumstances:

1. Process Temperature is Too Hot for the Local Electronics Enclosure

If the environment the sensor will be mounted in is too hot for the electronics module, or too hot for the safety of the operator, a remote electronics enclosure should be used.

2. Enclosed or Difficult-to-Reach Locations

If the sensor is placed in a location that makes reading the electronics module difficult, use the remote electronics option for ease of operator viewing, typically at eye level.

3. High Vibration

Mounting the electronics in a high-vibration location could damage the module.

Figure 16 - CSA Remotely Mounted Electronics

Interconnecting Cables for Remote Electronics

Non-Armored Cable

Assembly includes heat shrink with crimp ferrules.

(Strain relief fittings are not included, however they are available as an option).

Construction

8 color coded conductors 20 AWG, shielded cable, PVC jacket.

Voltage Rating

30 volts RMS

Temperature Rating

-20°C to +80°C (-4°F to +176°F)

Part Number

A05-GP-xxxx (xxxx = length in feet)

Armored Cable

General Purpose (Non-hazardous) Cable & Connector Assembly

Assembly includes 2 general-purpose cable fittings.

Construction

8-strand concentric, Class B tinned copper, .020" PVC insulation, individual and overall foil shield, color & number coded, drain and Mylar separator, PVC inner jacket, aluminum interlock armor, PVC outer jacket.

Voltage Rating

300 volts

Temperature Rating

-40°C to +90°C (-40°F to +194°F); insulation rated @ 105°C (221°F)

Part Number

A06-GP-xxxx (xxxx = length in feet)

Flameproof Cable & Connector **Assembly**

Assembly includes 2 sealed explosion-proof cable fittings and sealing compound.

Construction: 8-strand concentric, Class B tinned copper, .020" PVC insulation, individual and overall foil shield, color & number coded, drain and Mylar separator, PVC inner jacket, aluminum interlock armor, PVC outer jacket.

Voltage Rating

300 volts

Temperature Rating

-40°C to +90°C (-40°F to +194°F); insulation rated @ 105°C (221°F)

Part Number

A06-XP-xxxx (xxxx = length in feet)

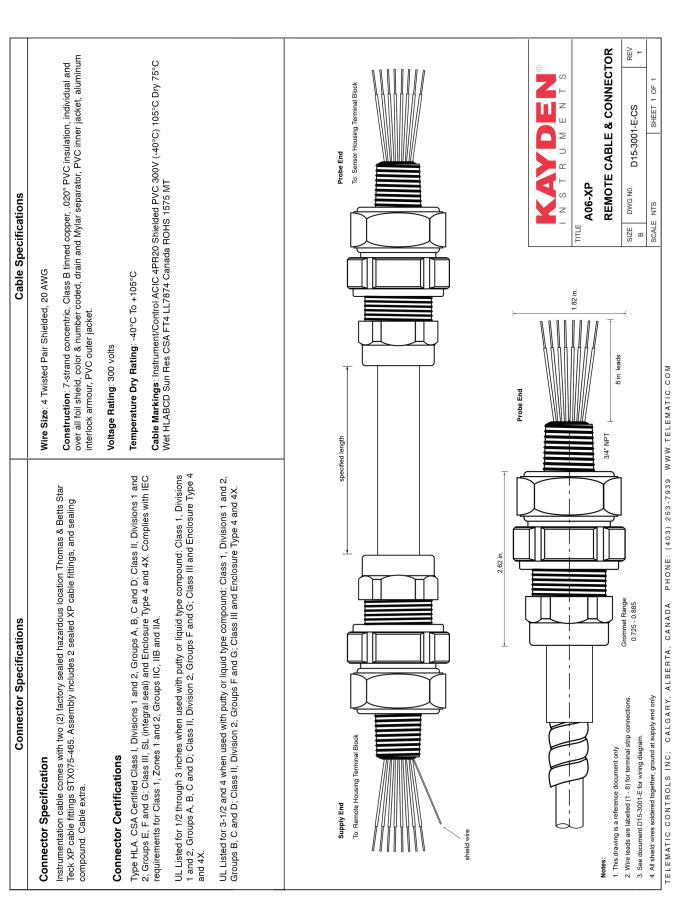


Figure 17 - A06-XP Remote Cable and Connector Specifications Drawing

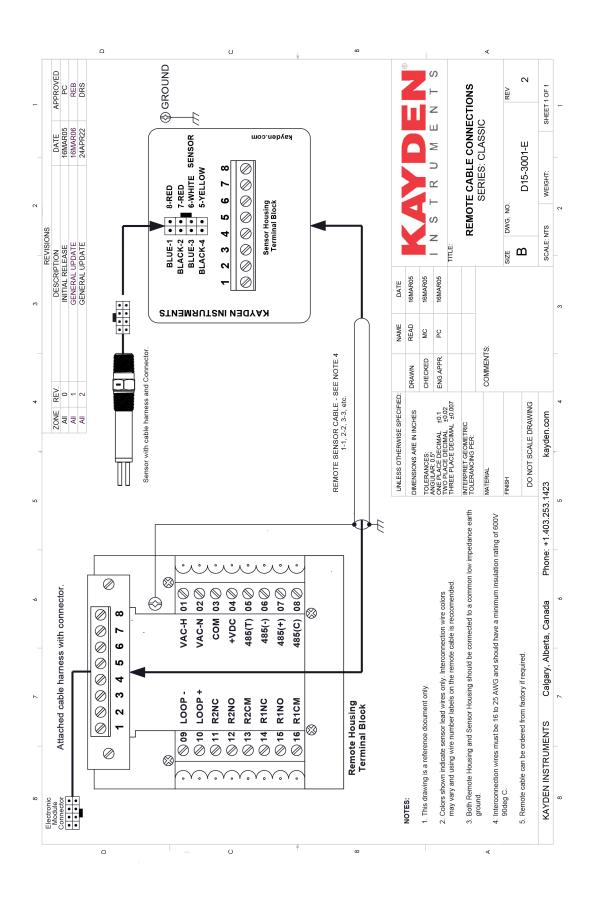


Figure 18 - CLASSIC 800 Wiring Diagram - Remote Electronics

Optional Wiring Methods for 4-20 mA Current Loop

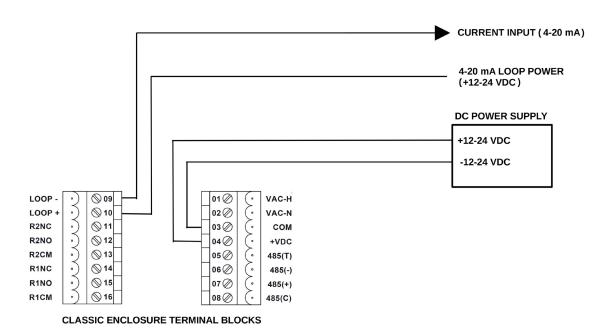


Figure 19 - DC Powered CLASSIC, 4-Wire External Loop Power - Current Sinking

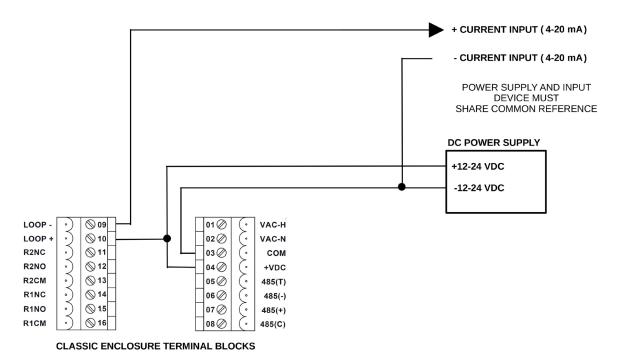


Figure 20 - DC Powered CLASSIC, 3-Wire Internal Loop Power - Current Sourcing

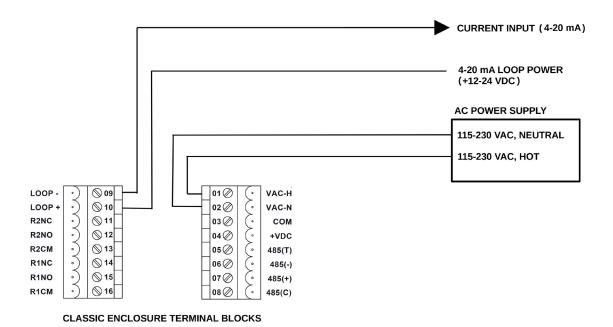


Figure 21 - AC Powered CLASSIC, 4-Wire External Loop Power - Current Sinking

TESTING THE INSTALLATION VIII.

1. Self-test Diagnostics

- The CLASSIC 800 continuously executes a self-test on its internal components and firmware. All diagnostics are controlled by the microprocessor and are independent of the operation of the switch and the process conditions.
- At initial power-on the CLASSIC 800 performs a complete self-test of all hardware and firmware. During this test all LEDs on the Thermal Signal display will flash for approximately 2 seconds.
- If a Fault is discovered during the self-test a Fault Code will be displayed and the relay will de-energize. (Fault Codes are explained in Section 7 "Troubleshooting").

2. Power

- Turn on the power to the switch and allow the sensor to heat up and stabilize (approximately 90 seconds).
- At the conclusion of the self-test, if there is no fault condition present, the Run Mode LED will begin flashing and a single LED (in the Thermal Signal Bar Graph) will appear on the display. As the heater element warms up, the switch will respond to the process conditions and this LED indicator will move to the left.
- Relay 1 and/or Relay 2 LEDs may illuminate depending upon the Thermal Signal, relay set point(s) and the programmed Relay condition (set to energize ABOVE or BELOW set point).

3. Manual Test

- Immerse the sensing tip in the actual process media by filling the pipe or vessel to the point at which the switch will actuate, or alternatively, into a container of the process media.
- When the sensor is alternated between wet and dry conditions (in and out of the media), the illuminated Thermal Signal LEDs should move and the relay set point LED(s) should change state (ON/ OFF). The degree and speed of the movement of the Thermal Signal LED depends completely on how well the current setup of the CLASSIC 800 corresponds to the process conditions of the test.*
 - Note: *Because a complete setup may not have yet been performed allow at least 20 30 seconds for the sensor and relay to react when alternating between wet and dry conditions (in and out of the
- A complete explanation of setup procedures follows in Section 4 "Setup & Operation" and in the Quick Setup Guide for the CLASSIC 800.

Top/Bottom

Mount

35% to 65% max

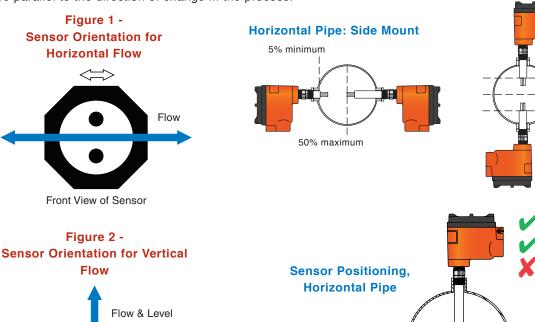
35% to 45% max

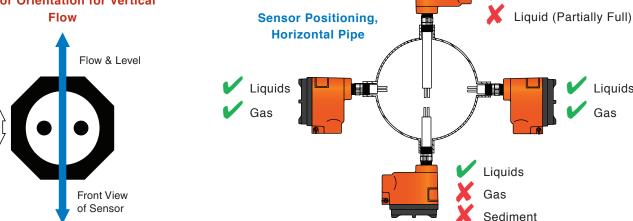
50%

Liquids

Quick Setup Guide

Mechanical Installation


Observe the following safety guidelines before installing or removing your CLASSIC switch/transmitter:


- Use proper eye protection and any other safety equipment as required by your installation site.
- Check electrical power to ensure that all power has been disconnected and "locked out."
- Ensure the process tank or line pressures are "zero."
- Protect yourself against accidental release of steam, hot water, acids and other potentially hazardous media.
- Follow all safety precautions as specified for your installation site and local codes.

- 1. Before installing your CLASSIC, coat the sensor threads with facility-approved lubricant or sealant to prevent threads from binding.
- 2. Extra caution should be taken not to over-tighten the sensor threads while installing.
- 3. Install the CLASSIC, taking into account the orientation of the sensor as described below.
- 4. Keep in mind the need for easy access, safety of personnel and a suitable environment for the CLASSIC. In general, install the CLASSIC so as to minimize its exposure to vibration, shock, and extreme temperature fluctuations.

Sensor Orientation

The CLASSIC sensor is marked with the universal symbol 😂 . This surface should be flat up and level in a horizontal flow application only. Refer to Figures 1 and 2 for flow and level applications; this surface of the hex should be parallel to the direction of change in the process.

Liquids

Gas

KAYDEN | Quick Setup Guide

To configure or adjust the CLASSIC, perform these steps in the order indicated. STEP 1 - Perform changes to Heater Power on Setting 7, then adjust Scaling on Settings 10 & 11

STEP 2 - Push RUN and verify the Thermal Signal is within the unscaled or new scaled view.

Press RUN to exit Setup

Note: If Bypass is turned on, the

RUN MODE will not start until the selected time ends

and return to RUN MODE.

STEP 3 - Perform changes to Relay operation on settings 1 & 2

STEP 4 - Perform changes to Set Points on settings 4 & 5

● LED SOLID ★ LED FLASHING

Press SET to enter

Configuration Mode.

menu options, press

To access all 11

SET repeatedly.

How to Enter, Scroll & Exit the Configuration Menu

RELAY 1

Select the coil operation to energize lower or higher than set point.

Press 1x

Factory Default: LOWER

Select the coil operation to energize lower or higher than set point.

Press 2x

Factory Default: LOWER

FAULT

Select the fault action to be either Fail low at 3.0 mA or Fail high at 21 mA

Select a Thermal Signal Set Point for Relay 1

Factory Default: 25%

Press 3x

Factory Default: 3.0 mA

3.0 mA Output Fault

Energize Lower than

Energize Higher than

Energize Lower than

Energize Higher than

Setpoint

Setpoint

Setpoint

Setpoint

21.0 mA Output Fault

Decrease Set Point

Increase Set Point

Press 4x

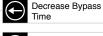
Set Point 2

Set Point 1

Select a Thermal Signal Set Point for Relay 2

Factory Default: 75%

Decrease Set Point


Increase Set Point

BYPASS

Select an amount of time for the switch to return to RUN mode. Increments of 5 seconds

Factory Default: 0 Seconds

Increase Bypass

Time Decrease Heater

Increase Heater Power

Power

RELAY 1

Select a Node Address for Modbus Comms. Software Rec is also identified on the left LEDs

Factory Default: 75%

Press 8x

Factory Default: 1

affects the sensitivity to flow.

Decrease Node Address

Increase Node Address

Select the action of the 4-20 mA Output to either Reverse or Forward acting.

Press 9x

Factory Default: Forward

Forward Acting mA Output

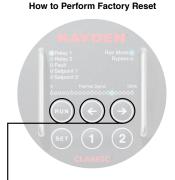
Reverse Acting mA Output

Select a zero percent thermal signal for the LRV scaled view.

Factory Default: 0%

Decrease LRV Increase LRV

Select a one hundred thermal signal for the URV Scaled View



Decrease URV

Increase URV

Press & Hold RUN + LEFT ARROW + RIGHT ARROW for 5 seconds to complete a FACTORY RESET

*MUST BE IN RUN MODE

- A Press & Hold RUN to view Software Rev & Modbus Node Address
- B Press & Hold LEFT ARROW to view LRV and URV.
- Press & Hold RIGHT ARROW to view Thermal Signal on Unscaled Bar Graph
- D Press & Hold 1 to view Set Point 1
- E Press & Hold 2 to view Set Point 2

CLASSIC 800 Display Panel

Mounting Base Plate / Terminal Assembly

Mounting Base Plate Wire Positions			
09 - LOOP -	01 - VAC-H		
10 - LOOP +	02 - VAC-N		
11 - R2NC	03 - COM		
12 - R2NO	04 - +VDC		
13 - R2CM	05 - 485-T		
14 - R1NC	06 - 485-A (-)		
15 - R1NO	07 - 485-B (+)		
16 - R1CM	08 - 485-C		

Display Panel Indicators:

Relay 1	On steady when Relay 1 is energized
Relay 2	On steady when Relay 2 is energized
Fault	Indicates a self-test error or fault condition
Set Point 1	On steady when viewing Set Point 1
Set Point 2	On steady when viewing Set Point 2
Run Mode	Flashing when switch is operating
Bypass	Flashing when the Start-up Bypass Timer is active
hermal Signal	Displays Thermal Signal

The Thermal Signal increases as:

Flow	The flow rate increases
Level	The sensor is submerged
Interface	The sensor is submerged by the second liquid of
	greater thermal conductivity

RUN MODE - Run Mode LED is 'Flashing'		
RUN	Press and hold to view the Software Revision and Node Address	
SET	Press and release to enter Set Mode (see table below)	
Left Arrow	Press and hold to view the LRV and URV on Unscaled Bar Graph	
Right Arrow	Press and hold to view Thermal Signal data on Unscaled Bar Graph	
1	Press and hold to view Set Point 1 on Bar Graph	
2	Press and hold to view Set Point 2 on Bar Graph	

SET MODE - Run Mode LED is 'Off'		
RUN	Press and release to exit Set Mode and return to Run Mode	
SET	Press and release to proceed to next step of Set Mode	
Left Arrow	Adjust selection as per Set Mode function	
Right Arrow	Adjust selection as per Set Mode function	
1	No function in Set Mode	
2	No function in Set Mode	

CAUTION

Installation, connection and maintenance must be carried out by expert technicians who have read these operating instructions. These operating instructions include all-important information required for the installation and operation of this product. They supplement the full Product Manual, and the relevant national regulations with respect to the equipment as well as with the maintenance activities.

POWER, AC/DC

Either AC or DC voltage can be used to power the CLASSIC:

- For AC power, connect the HOT line to VAC-H. the NEUTRAL to VAC-N and the GROUND wire to the green grounding screw, also indicated by the ground symbol.
- For DC Power, connect the positive voltage to +VDC and the common or negative to COM.

CAUTION

Never power on the circuits in a potentially explosive area without first installing the enclosure cover.

Always lock the cover in place. This may be required by your local safety or electrical code.

RELAY OUTPUTS

The CLASSIC features two independent set points each with its own mechanical relay for output. The connections for the contacts of these relays are:

R1COM	Common or pole contact for Relay 1	
R1NC	Normally closed contact for Relay 1 when the coil is not energized	
R1NO	Normally open contact for Relay 1 when the coil is not energized	
R2COM	Common or pole contact for Relay 2	
R2NC	Normally closed contact for Relay 2 when the coil is not energized	
R2NO	Normally open contact for Relay 2 when the coil is not energized	

NOTE: For fail-safe installations, the desirable relay state is usually energized and the circuit closed. Use the normally open contacts for fail-safe installations since they are closed when the relay is energized.

MAINTENANCE

Your Kayden instrument requires very little maintenance as there are no moving parts.

Without detailed knowledge of the environment parameters of the application surroundings and process data media, we cannot make specific recommendations for periodic inspection, cleaning, or testing procedures. we do however suggest general guidelines for

Helping the World Switch

Kayden Instruments

3364-114th Avenue S.E. Calgary, Alberta, Canada T2Z 3V6

Tel: +1 403 253 1423 Web: kayden.com

DOC#: QG-800-005 Effective: January 2025 Supercedes: November 2024

maintenance (see the CLASSIC Product Manual). Use operating experience to establish the frequency of each type of maintenance.

CALIBRATION

The CLASSIC does not require any calibration for use as a switch/transmitter. Once properly setup, the CLASSIC will be as stable and repeatable as the process in which it is installed. It may be necessary to check or repeat the setup procedure if the process changes dramatically over time.

HEATER POWER

The CLASSIC uses a constant power heater (2 Watt maximum), that can be set between 0 - 100% in 5% increments.

- Since the energy added by the heater is used in determining the Thermal Signal, altering the amount of heat changes the Thermal Signal.
- If the heater power is changed more than 5% (1) LED) this may require the 0% & 100% Thermal Signal to be similarly adjusted in order not to lose sensitivity and reaction time.
- The Factory Default Heater Power setting of 75% (1.5 watts) is suitable for most Flow applications with Hydro-carbons.
- RECOMMENDED HEATER POWER SETTINGS:
 - 30 60% heater power (7-13 LEDs) -Air or Gas (Flow) (depending on velocity)
 - 60 75% heater power (13-16 LEDs) -Oil or Hydrocarbon based liquids (Flow, Level & Interface)
 - 80 100% heater power (17-21 LEDs) -Water or non-viscous liquids (Flow, Level & Interface)

The faster the flow rate (velocity) the more heat required. In level applications the amount of heat, in part, determines the reaction time.

The CLASSIC 800 Series has a "Smart Heater" function (see the "Classic 800 Product Manual"). If a heater operates constantly in a no flow or dry condition, a "Thermal Offset" can occur. This means the heater may affect the reading from the reference RTD. The microprocessor will automatically reduce the heater power setting to a lower power rating when the probe is "dry" or in a "no-flow" condition. When the process media touches the sensors, or flow begins again, the original heater power setting is restored.

4

Setup & Operation

Figure 1 - CLASSIC 800 Display Panel

Display Panel Indicators:

Relay 1 On steady when Relay 1 is energized Relay 2 On steady when Relay 2 is energized **Fault** Indicates a self-test error or fault condition **Set Point 1** On steady when viewing Set Point 1 **Set Point 2** On steady when viewing Set Point 2 **Run Mode** Flashing when switch is operating **Bypass** Flashing when the Start-up Bypass Timer is active **Thermal Signal** Displays Thermal Signal

The Thermal Signal increases as:

Flow The flow rate increases

Level The sensor is submerged

Interface The sensor is submerged by the second liquid of greater thermal conductivity

Display Panel Button Functions - RUN Mode and SET Mode.

RUN MODE - Run Mode LED is 'Flashing'		
RUN	Press and hold to view the Software Revision and Node Address	
SET	Press and release to enter Set Mode (see table below)	
Left Arrow	Press and hold to view the LRV and URV on Unscaled Bar Graph	
Right Arrow	Press and hold to view Thermal Signal data on Unscaled Bar Graph	
1	Press and hold to view Set Point 1 on Scaled Bar Graph	
2	Press and hold to view Set Point 2 on Scaled Bar Graph	

SET MODE - Run Mode LED is 'Off'		
RUN	RUN Press and release to exit Set Mode and return to Run Mode	
SET	Press and release to proceed to next step of Set Mode	
Left Arrow	Adjust selection as per Set Mode function	
Right Arrow	Adjust selection as per Set Mode function	
1	No function in Set Mode	
2	No function in Set Mode	

GENERAL INFORMATION

1. Warm-up

At initial start-up or restart allow approximately 90 seconds for the heater element to warm-up and the switch to stabilize before making any adjustments.

2. Diagnostics

As described in greater detail in Section 7 "Troubleshooting" an automatic diagnostic program runs continuously when power is connected. To prevent the possibility of intermittent failures the CLASSIC 800 will display a Fault condition in the event of improper electrical connection, loss of power and/or physical damage.

3. Universal Power

The CLASSIC 800 will accept either 12-24 VDC or 115-230 VAC but must be wired accordingly.

The CLASSIC 800 may not be loop powered. At a minimum the unit typically requires 4 wires: 2 for power and 2 for one relay (see Figure 12 - CLASSIC 800 Wiring Connection Diagram).

Power consumption for the CLASSIC 800 is rated at a maximum of 6 VA (watts). The maximum rating is based on the assumption that both relays are energized, the heater is at maximum power and several LEDs are illuminated. An application involving the relay energized and the heater at 80% power consumes typically 300 mA or 4 VA.

4. Electronics

The CLASSIC 800 Electronics Module is universal and may be installed for testing or operation in all CLASSIC 800 series switches/transmitters regardless of sensor configuration. Therefore, the Electronics Module may be considered a universal spare part and the most essential troubleshooting tool for all applications.

II. CONTROL SETTINGS and SETUP PROCEDURES

Quick Setup Guide

This section contains detailed information supplementing the CLASSIC 800 "Quick Setup Guide" (Section 3). For convenience, the procedures are listed in the same order as the Configuration Flow Chart in the Quick Setup Guide.

Quick Setup for Pump Flow / No Flow

For Kayden Flow / No Flow switch configuration: follow these steps:

- 1. Make sure switch is turned on with "Run" light flashing and wait a minute for probe to heat up and stabilize.
- 2. Turn pump "On then Off" to see the "No flow" and "Full flow" Thermal Signal values on the LED Bar Graph. Then adjust the LRV to the "No flow" value, and the URV to the "Full flow" value.
- 3. Now set the Set-point for the relay to approximately "the middle" of change "between No Flow to Full Flow change" indicated.

Note: For "Failsafe" operation. Relay should be energized during flow condition, with alarm wires connected to Normally Open & Common contacts.

Please contact Kayden Technical Support for any assistance for your application.

KAYDEN | Setup & Operation

1. View or Adjust Relay 1 & 2 Energized Mode

The CLASSIC has two relays which can be independently configured to energize lower or higher than Set Point.

Both relays on the CLASSIC 800 have Normally Open and Normally Closed contacts. The terms 'Open' and 'Closed' refer to the de-energized state of the relays. Normally Open or Normally Closed operation for Relay 1/Relay 2 is determined by wiring the contacts accordingly (see Figures 15 [pg. 17] & 18 [pg. 20]).

- · RUN advances to Run Mode
- · SET advances to next Setup step
- · Run Mode LED is Off in Setup Mode

Figure 22 - Relay Energized Mode

To View or Adjust Relay 1 & 2 Energized Modes

- Press SET until the Relay 1 LED is ON solid to set the Relay 1 Energized Mode, or until the Relay 2 LED is ON solid for the Relay 2 Energized Mode. The Run Mode LED will be OFF.
- 2. The Thermal Bar Graph will show the left 6 LEDs (0% to 25%) ON to indicate the energized mode is lower than set point, or the right 6 LEDs (75% to 100%) ON to indicate the energized mode is higher than set point.
- 3. To adjust the Mode, press and release the Left or Right Arrow keys.
- When satisfied with your configuration, press and release SET to continue to the next programmable variable OR press and release RUN to return to Run Mode.

Failsafe Relay Configurations

The term "Fail-safe" refers to a method of wiring and programming control instrumentation commonly used in hazardous locations/applications.

- In a "Fail-safe" application the CLASSIC 800 switch/transmitter is wired and programmed so that the output relay is energized in normal process operating condition.
- Thus, in the event of a power failure, cable break, self-test failure, or other loss of electrical power, the contact is "opened", the relay is de-energized and an alarm will result.

A common "Fail-safe" setup for NO FLOW CONDITION, PUMP PROTECTION:

- Connect the relay contact wires to Normally Open (R1NO, R1CM)
- Program the relay(s) to energize above set point.
- Depending on application and setup of the switch/transmitter, the relay contact(s) will OPEN (deenergize) when:
 - a. The Thermal Signal decreases due to a decrease or loss of flow/level.
 - b. Power is lost to the switch/transmitter as described above.

KAYDEN | Setup & Operation

2. View or Adjust 4-20 mA Fault Mode Configuration

The 4-20 mA output is used to monitor the analog data from the sensor, such as a self-test fault. The 4-20 mA output can be programmed for a value of 3.0 mA or 21 mA.

Refer to Section 7 "Troubleshooting" for a description of fault conditions. Note:

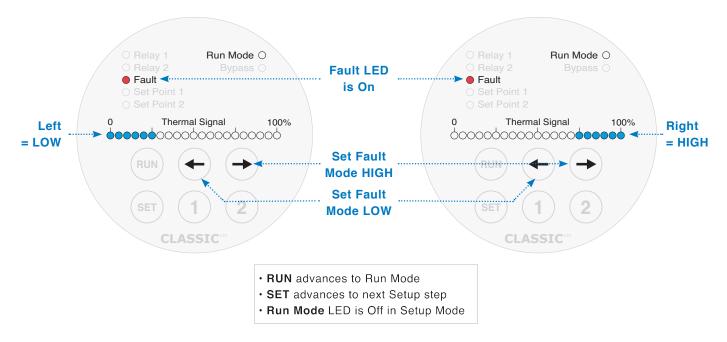


Figure 23 - 4-20 mA Fault Mode Configuration

To View or Adjust Fault Current

- 1. Press and release SET until the Fault LED is on solid; the Run Mode LED will be off.
- 2. The Thermal Signal Bar Graph shows the 4-20 Fault Mode. For 3.0 mA the 0-25% LED's are on solid: for 21 mA the 75-100% LED's are on solid.
- 3. To adjust the Mode, press and release the Left or Right Arrow keys.
- 4. When satisfied with your configuration, press and release SET to continue to the next programmable variable OR press and release RUN to return to Run Mode.

3. View or Adjust Set Points 1 & 2

Notes: 1. Viewing either Set Point 1 or 2 from the Display Panel does not require entering the Manual Setup Mode. While still in RUN Mode, press and hold 1 or 2 to view the programmed Set Point.

- 2. In this context "Set Point" refers to the point(s) within the user defined range at which **Relay 1** and **Relay 2** energize/de-energize.
- 3. Set Point 1 always corresponds to Relay 1 and Set Point 2 always corresponds to Relay 2.
- **4.** Relay energize/de-energize can be delayed by configuring relay delay timers. Refer to Modbus Registers and Kayden RCM Software use in **Section 6**.

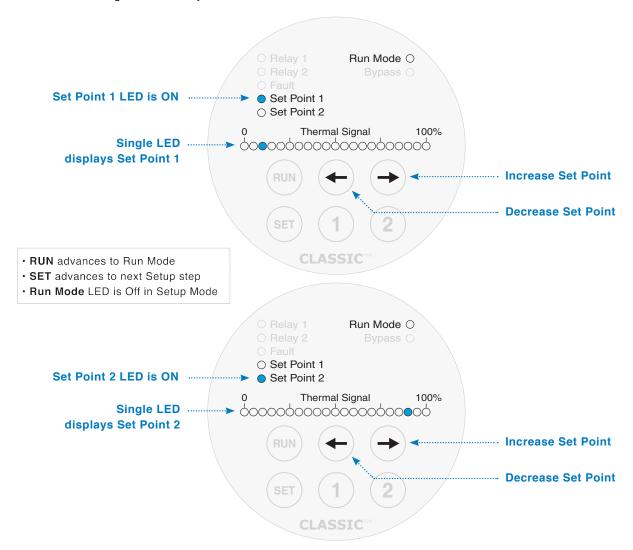


Figure 24 - Set Point 1 & 2 Configuration

To View or Adjust Set Points

- Press and release SET until the Set Point 1 or Set Point 2 LED is on solid and the Run Mode LED is off.
- One LED on the Thermal Signal Bar Graph will illuminate, corresponding to the present setting of the selected set point.
- To adjust the selected Set Point, press and release the Left or Right Arrow keys.
- **4.** When satisfied with your configuration, press and release **SET** to continue to the next programmable variable OR press and release **RUN** to return to **Run Mode**.

4. View or Adjust Start-up Bypass Timer

The Start-up Bypass Timer can be used to energize both relays when the CLASSIC is initially powered ON, or when the SET button is pressed followed by the RUN button. This provides a means to automatically restart a pump that has been turned OFF by the CLASSIC, without the need for additional hardware.

Notes: 1. The Start-up Bypass Timer is commonly used to automatically re-start a pump after the specified (programmed) time delay.

- 2. During the Bypass Delay, both relays are energized regardless of their Mode or the value of the Thermal Signal.
- 3. When the Start-up Bypass Timer is in use, neither Setup Mode nor the Thermal Signal Bar Graph are available until the programmed delay time expires.

The Thermal Signal Bar Graph displays the delay (each LED right of the zero LED in Bypass Mode equals 5 seconds; therefore the maximum time in Bypass is 100 seconds). Instead of measuring from 0 to 100 percent the Thermal Signal Bar Graph shows the delay from 0 to 100 seconds.

If the Start-up Bypass Timer is set to zero then no Bypass Delay will occur. (The Factory Default setting is zero seconds.)

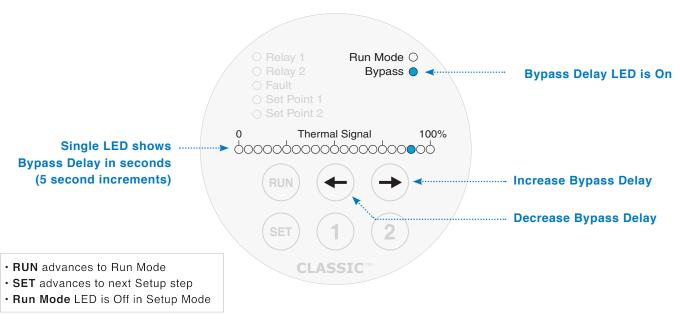
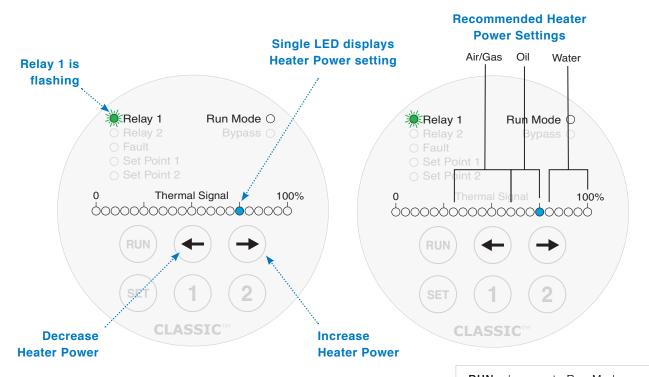


Figure 25 - Start-up Bypass Timer

To View or Adjust Bypass Timer Settings


- Press and release SET until the Bypass LED is on solid and the Run Mode LED is off. 1.
- 2. One LED on the Thermal Signal Bar Graph will illuminate corresponding to the present setting of the Start-up Bypass Timer.
- 3. To adjust the Start-up Bypass Timer, press and release the Left or Right Arrow keys.
- 4. When satisfied with your configuration, press and release SET to continue to the next programmable variable OR press and release **RUN** to return to **Run Mode**.

5. View or Adjust Heater Power

- The correct heater setting is determined primarily by the process media and secondarily by the velocity
 of the process. The heater setting is a key factor in determining the sensitivity and reaction time of the
 switch/transmitter.
- The CLASSIC 800's sensor heater produces 2 Watts at full power.
 - The "Smart Heater" function in the CLASSIC 800 Series continously monitors the Thermal Signal.
 If the Thermal Signal falls to zero, the heater power is automatically reduced from the user
 setting to prevent the creation of a "Thermal Offset". The heater power will be restored to the
 user setting when the Thermal Signal increases.
 - The Factory Default setting of 75% is optimal (70 80% depending on velocity) for Hydrocarbon-based liquids and suitable for many applications. The CLASSIC 800 allows the Heater Power to be set between 0% and 100% in 5% steps.
 - RECOMMENDED HEATER POWER SETTINGS:
 - 30 60% heater power (7-13 LEDs) Air or Gas (Flow) (depending on velocity)
 - 60 75% heater power (13-16 LEDs) Oil or Hydrocarbon based liquids (Flow, Level & Interface)
 - 80 100% heater power (17-21 LEDs) Water or non-viscous liquids (Flow, Level & Interface)

The faster the flow rate (velocity) the more heat is required. In level applications the amount of heat, in part, determines the reaction time.

Note: The heater power is shown when using Kayden RCM software in the Graph view.

- \bullet RUN advances to Run Mode
- SET advances to next Setup step
- · Run Mode LED is Off in Setup Mode

Figure 26 - Setting the Heater Power

6. View or Adjust Node Address & View the Software Revision

The Software Revision and Node Address are displayed on the **Thermal Signal Bar Graph** as two binary bytes. The Software Revision is not adjustable but can be useful should telephone support be required.

The Factory Default for the Node Address is 1 (one).

Adjusting the Node Address is only required if setting up a multi-point RS-485 network or adding the CLASSIC 800 to an existing RS-485 network.

The Software Revision and Node Address can also be viewed while in Run Mode by pressing and holding the RUN key.

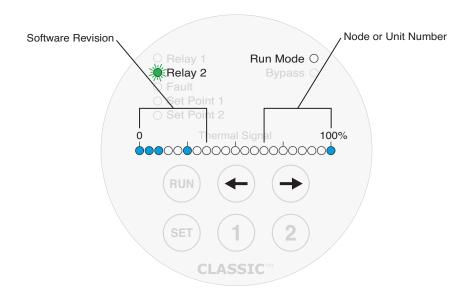


Figure 27 - Software Revision & Node (Unit) Number

To View or Adjust Node (Unit) Address

- Press and release SET until the Relay 2 LED is flashing AND the Run Mode LED is off. 1.
- 2. The Thermal Signal Bar Graph now displays the value of the Software Revision and the setting of the Node Address.
- 3. The Node Address is displayed in binary using the eight LED's on the righthand side of the Bar Graph. Refer to 3. Note Address in Section 5 Modbus to interpret the Node Address.
- 4. To adjust the Node Address, press and release the Left and Right Arrow keys.
- 5. When satisfied with your configuration, press and release SET to continue to the next programmable variable or press and release RUN to return to Run Mode.

7. View or Adjust 4-20 mA Output Configuration (Forward or Reverse Acting)

The current output is an analog signal representing the Thermal Signal Bar Graph View. The action chosen only affects the 4-20 mA Analog Output, and does not affect the Thermal Signal Bar Graph.

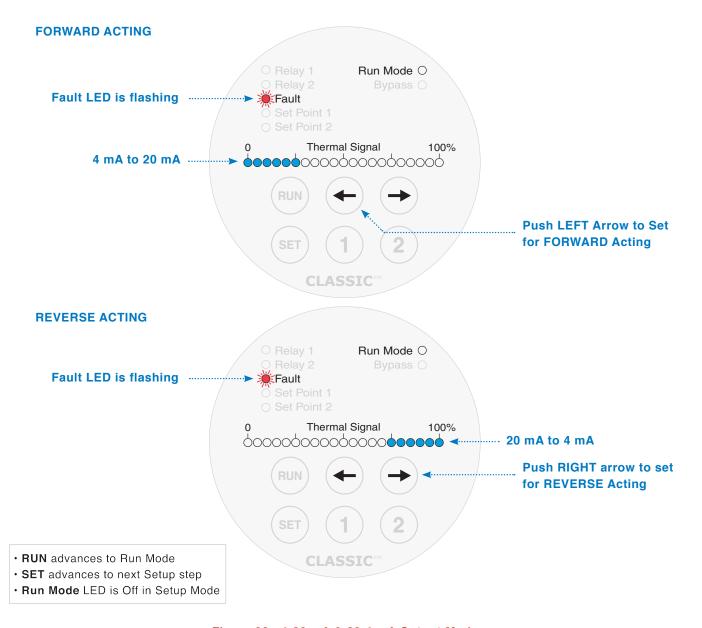


Figure 28 - 4-20 mA & 20-4 mA Output Mode

To View or Adjust 4-20 mA Output Current Mode

- 1. Press and release SET until the Fault LED is flashing AND the Run Mode LED is off.
- 2. The **Thermal Signal Bar Graph** shows the 4-20 Output Mode.

For 0% equal to 4 mA the 0-25% LED's are on solid.

For 100% equal to 4 mA the 75-100% LED's are on solid.

- 3. To adjust the Mode, press and release the **Left** or **Right Arrow** keys.
- **4.** When satisfied with your configuration, press and release **SET** to continue to the next programmable variable OR press and release **RUN** to return to **Run Mode**.

8. View Bar Graph Lower Range Value (0%) and Upper Range Value (100%)

The Unscaled Bar Graph is the maximum thermal signal range that the CLASSIC 800 can display.

For improved resolution, the Lower Range Value (LRV) and Upper Range Value (URV) can be adjusted in 5% incerments (the default value of LRV is 0% and URV is 100% as shown below in Figure 24).

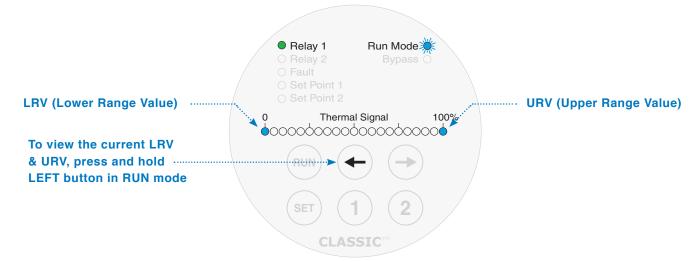


Figure 29 - Maximum Range of Lower Range Value (LRV) & Upper Range Value (URV)

Adjust the LRV and URV according to:

- Media type (oil, water or gas).
- · Best resolution to configure the Relay Set Points

To illustrate the effect of changing the LRV and URV, see Figure 25.

 Air/Gas
 0 - 50%

 Oil
 40 - 100%

 Water
 50 - 100%

- LRV has been moved from 0% to 50%
- URV has been moved from 100% to 75%

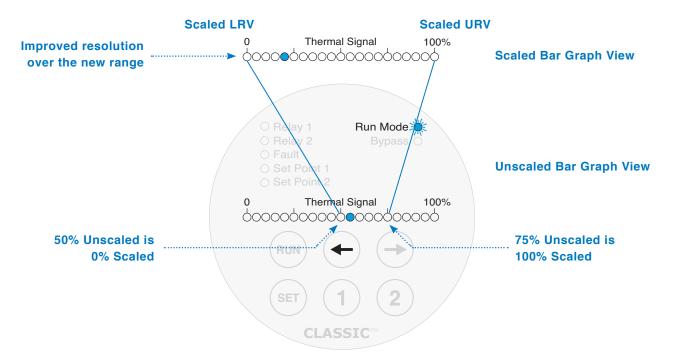


Figure 30 - Scaled Bar Graph View vs. Unscaled Bar Graph View

9. Adjust Bar Graph Lower Range Value (0%) and Upper Range Value (100%)

- 1. To set the LRV (0%), press and release **SET** until the **Set Point 1** status LED is **flashing**. To set the URV (100%), press and release **SET** until the **Set Point 2** status LED is **flashing**.
- 2. The Thermal Signal Bar Graph now shows the value of the LRV (or URV).
- 3. To adjust the LRV or URV, press and release the Left or Right Arrow keys.
- 4. When satisfied with your configuration, press and release **SET** to continue to the next Programmable Variable OR press and release **RUN** to return to **Run Mode**.

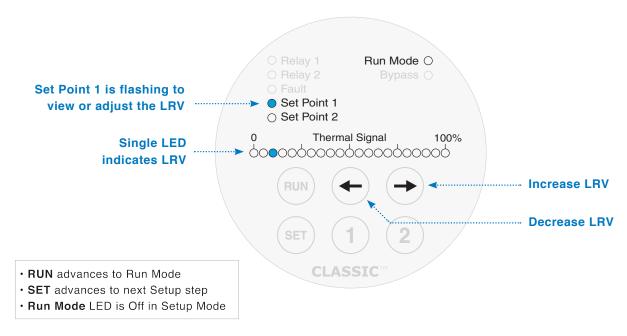


Figure 31 - Setting the Scaled Thermal Signal LRV

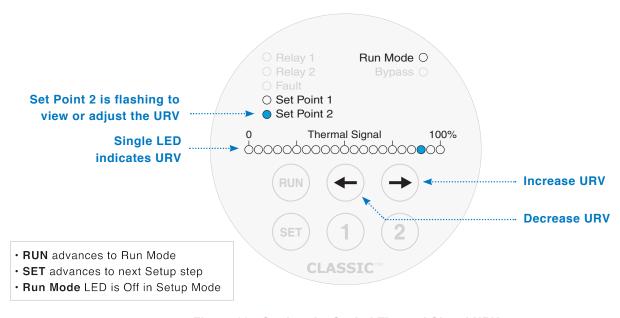
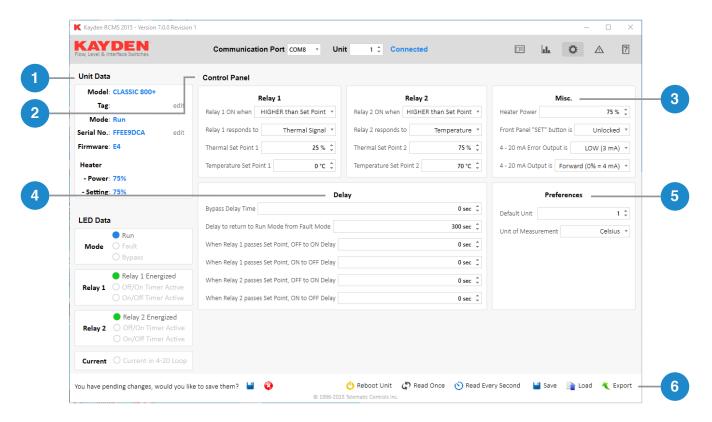


Figure 32 - Setting the Scaled Thermal Signal URV



Additional Setup Features Using Kayden RCM Software via Modbus RTU

Kayden RCM Software provides all the same features as the CLASSIC front panel UI, plus the additional features below:

- Configure relays to respond to temperature
- Configure Temperature Alarm Value (in Fahrenheit or Celsius)
- Configure Relay Delay Timers
- Configure the Delay to Return Mode from Fault Mode timer
- Save a Tag character string in the CLASSIC for identification
- Lock the front panel user interface to prevent accidental or undesired access

After launching RCM Software, access the Unit Configuration view

Configuration View

- Displays CLASSIC unit information and LED status.
- 2. Configure Relay 1 and 2 Actuation Level, Thermal Signal or Temperature Control, and Setpoints.
- Configure Heater Power, Lock Front Panel, Analog 4-20 mA Output Direction, and Analog 4-20 mA Error Condition.
- Configure relay delay timers. 4.
- Select Unit of Measurement to display (also default Modbus ID for connecting after launch). 5.
- 6. Control buttons to Reboot Unit, Read Once, Read Every Second, Save Configuration.

Notes: 1. To communicate with your Kayden CLASSIC 800, you will require an RS-485 adapter such as the Kayden SCA.

2. Additional copies or the latest revision of the RCM Software may be downloaded at our website, kayden.com, or call Kayden at +1 403 253 1423.

Kayden Setting & Configuration Log Sheet

ce Info	Order, Model & Serial Number	
	Process Media / Phase E.g. Water/Liquid, Propane/Gaseous	
	Fluid Velocity m/s (ft/s)	
Devi	Operating Temperature °C (°F) Typical Process Temperature	
	Install Date dd/mm/yyyy	

Configuration & Setting Information

	М	ark an 'X' or state which LED(s)	are illuminated between 0-100		
	×	×			
Relay 1 LED NON-FLASHING		First 6 LEDs Energize lower than set point	Last 6 LEDs Energize higher than set point		
Relay 2 LED NON-FLASHING		First 6 LEDs Energize lower than set point	First 6 LEDs Energize lower than set point		
Fault LED NON-FLASHING		First LED Fail Low at 3.0 Ma	Last LED Fail Low at 21.0 Ma		
Set Point 1 LED NON-FLASHING			int 1 Setting 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100		
Set Point 2 LED NON-FLASHING		Set Point 2 Setting 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, Bypass Time Amount. Each LED Represents 5 Sec. 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,			
LED NON-FLASHING Bypass LED NON-FLASHING Relay 1					
Relay 1 FLASHING		Heater Power Percentage 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,			
Relay 2 FLASHING		Modbus Address Appears to the Right (can be multiple LEDs) 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100			
Fault FLASHING		First 6 LEDs Forward Acting	First 6 LEDs Reverse Acting		
Set Point 1 FLASHING		State which LED is illuminated 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100			
Set Point 2 FLASHING		State which LED is illuminated 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100			

Record Fault Code

Code	Mark an 'X' or state which LED(s) are illuminated between 0-100							
	LEDs on 1st 1		State which LED(s) is illuminated 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100					
ault C				0, 5, 10, 15	State whi 5, 20, 25, 30, 35, 4	ch LED(s) is ill 0, 45, 50, 55, 60, 6		90, 95, 100
T.	Front Display	Relay 1	Relay 2	Fault	Set Point 1	Set Point 2	Run Mode	Bypass
	X, O or Blank							

5

Modbus RTU Interface

1. Modbus History

Modbus is a serial communication protocol developed and published by Modicon in the late 1970's for use with its programmable logic controllers and has become the de facto standard for interconnected industrial electronic devices. Modbus is a client-server protocol; a Modbus client requests information from (or provides information to) a Modbus server. In a standard Modbus network, there is one client and up to 247 servers, each Modbus server has a unique Node Address.

The Modbus specification defines the general Modbus protocol and is available for free from The Modbus Organization (www.modbus.org). This chapter provides the specific implementation details of the Kayden CLASSIC.

2. Modbus Implementation

Physical Layer: RS-485 half duplex, 9600 baud, 8 bits, no parity, 1 stop bit

Data Link Layer: Modbus RTU

Node Address: 1 to 239 (Factory Default 1)

3. Node Address

The CLASSIC displays the Node Address on the Bar Graph when the RUN button is depressed when in Run Mode, or when the SET button is pressed to access the View or Adjust the Node Address configuration menu (refer to Section 3.3 Configuration Flow Chart and Section 4.6 Setup & Operation – View or Adjust Node Address...).

The Node Address is displayed on the eight right-most LEDs of the Bar Graph as an 8-bit binary number.

Modbus Node Address	Eight Right-Most Bar Graph LEDs 0 = Off, 1 = On
1	0000001
2	0000010
3	00000011
4	00000100
5	00000101
-	-
239	11101111

Table 1 - Modbus Address Binary Table

4. Function Codes

The CLASSIC supports the following Function Codes.

Table 2 - CLASSIC Modbus Function Codes

Code	Name
01	Read Coil Status
03	Read Holding Registers
06	Preset Single Register
16	Preset Multiple Registers

5. Coils

A value of "0" indicates "inactive" (i.e. relay not energized, mode or timer not active, or 4-20 mA analog loop open). The coil values are also available in a single holding register; 40528 "BCoils".

Table 3 - Coils

Coil Number	Address (Hex)	Coil Function
1	0000	Relay 1
2	0001	Relay 2
3	0002	Run Mode
4	0003	Fault Mode
5	0004	Bypass Mode
6	0005	Loop Status
7	0006	-
8	0007	-
9	0008	Relay 1 Timer
10	0009	Relay 2 Timer
11	000A	Relay 1 Timer
12	000B	Relay 2 Timer
13	000C	-
14	000D	-
15	000E	-
16	000F	-

6. Holding Registers

Holding registers 40001 to 40048 are common status and configuration information.

All Holding Registers can be written to, but exercise care to avoid undesirable or incorrect behavior. Never write to Registers 40513 to 40535, except for Register 40517 which can be used to cause the CLASSIC to restart.

When writing to the CLASSIC to change its configuration, finish by writing '00F5h' to Register 40517 to cause a restart. This will ensure the new configuration takes effect.

Table 4 - Low Holding Registers (Configuration and Status)

Modbus Registers	Address (Hex)	Register Name	Description
40001	0000	PIDC	Product ID in high byte and Software revision in low byte
40002	0001	Node Address	Modbus server address. The upper byte must be 0.
40003-40004	0002-0003	ESN	Electronic Serial number formatted as a double word.
40005	0004	-	-
40006	0005	Bypass Delay	Number of 5 second delays from 0 to 20 (0 to 100 seconds)

KAYDEN | Modbus RTU Interface

Modbus Registers	Address (Hex)	Register Name	Description
40007	0006	4-20 Error Mode	Loop current while in error mode, 00FFh = 21mA, 0000h = 3mA
40008	0007	E-Lock	Front Panel Lock, 00E5h = Locked
40009	8000	NPWR	Number of Power Ons
40010	0009	NWDT	Number of Watch Dog Resets
40011	000A	NBOD	Number of Brown Out Detects
40012	000B	NERR	Number of Self Test Errors
40013	000C	NCOM	Number of Communication Errors
40014	000D	NOVR	Number of Overflow Errors
40015	000E	NFRM	Number of Framing Errors
40016	000F	NCRC	Number of CRC Errors
40017- 40024	0010-0017	CTAG	Custom ASCII Tag, 16 characters, 8 words
40025	0018	-	-
40026	0019	Error Mode Recovery Timer	Defaults value is 012Ch (300 seconds)
40027	001A	Relay Energized Mode	Upper byte for Relay 1, Lower byte for Relay 2 00 = On Lower than set point, FF = On Higher than set point
40028	001B	_	
40029	001C	4-20 Forward Reverse Mode	0000 = 4 to 20mA 00FF = 20 to 4mA
40030	001D	Relay Flow/ Temperature Mode	Upper byte for Relay 1, Lower for Relay 2 00 = Flow, FF = Temperature
40031	001E	Temperature Setpoint 1	16 bit word, temperature in degrees Celsius 16 bit 'inverted signed' value e.g. 8001 = 1, 8000 = 0, 7FFF = -1
40032	001F	Temperature Setpoint 2	16 bit word, temperature in degrees Celsius 16 bit 'inverted signed' value e.g. 8001 = 1, 8000 = 0, 7FFF = -1
40033	0020	Thermal (Flow) Setpoint 1	Thermal Alarm Set Point 1 in 5% steps 0 thru 20 decimal = 0% thru 100%
40034	0021	Thermal (Flow) Setpoint 2	Thermal Alarm Set Point 2 in 5% steps 0 thru 20 decimal = 0% thru 100%
40035	0022	-	-
40036	0023	-	Reserved
40037	0024	Delay Timer R1 OFF to ON	Delay in seconds from 0 to FEFF (65279) Values of FF00 (65280) and up equal infinity
40038	0025	Delay Timer R2 OFF to ON	Delay in seconds from 0 to FEFF (65279) Values of FF00 (65280) and up equal infinity
40039	0026	Range	N/A
40040	0027	Heater Power	Default Heater Power 0 thru 20 decimal = 0% thru 100%

Modbus Registers	Address (Hex)	Register Name	Description
40041	0028	LED URV	Scaled Thermal Signal URV, 0 thru 20 decimal (5% increments)
40042	0029	LED LRV	Scaled Thermal Signal LRV, 0 thru 20 decimal (5% increments)
40043	002A	-	-
40044	002B	Delay Timer R1 ON to OFF	Delay in seconds from 0 to FEFF (65279) Values of FF00 (65280) and up equal infinity
40045	002C	Delay Timer R2 ON to OFF	Delay in seconds from 0 to FEFF (65279) Values of FF00 (65280) and up equal infinity
40046	002D	-	-
40047	002E	-	-
40048	002F	-	-

Table 5 - High Holding Registers (Run-Time Variables)

Modbus Registers	Address (Hex)	Register Name	Description
40513	0200	AD0	Thermal Delta, 16 bit unsigned word, Inverse of Thermal Signal Thermal Delta of zero (0000h) = 100% Thermal Signal Thermal Delta of 60,000 (EA60h) = 0% Thermal Signal
40514	0201	-	-
40515	0202	-	-
40516	0203	Current Heater Power	Heater Power, indexed in 5% steps. 0 thru 20 decimal = 0% thru 100%
40517	0204	Mode Writing 00F5 will cause the CLASSIC to restart.	0000 - Reset 0001 - LED Self Test 0002 - Soft Reset 0003 - Startup heater and ADC 0004 - Bypass timer active 0005 - Run Mode 00F0 - Diagnostic mode 00F1 - Self Test mode 00F2 - Manual mode 00F5 - Reboot 00FE - Stop mode, (Heater Error)
40518	0205	Actual Temperature	Actual Process Temperature from Reference RTD in degrees Celsius, 16 bit signed word

KAYDEN | Modbus RTU Interface

Modbus Registers	Address (Hex)	Register Name	Description
40519	0206	-	Proprietary
40520	0207	-	Proprietary
40521	0208	-	Proprietary
40522	0209	-	Proprietary
40523	020A	-	Proprietary
40524	020B	-	Proprietary
40525	020C	-	Proprietary
40526	020D	-	Proprietary
40527	020E	-	Proprietary
40528	020F	BCoils	Output Coil status bits, as per 'Read Coil Status'
40533	0214	RTD1	Reference RTD
40534	0215	RTD2	Active RTD
40535	0216	Delta	Delta in ohms

6

Maintenance

I. GENERAL INFORMATION

With proper installation the CLASSIC 800 will require very little maintenance as there are no moving parts subject to wear. Following a few simple guidelines will ensure years of dependable service.

- 1. Enclosure Cover (Lens Cover Shown)
- 2. Cover O-Ring
- 3. Retaining Ring (Lens Cover Only)
- 4. Electronics Module

- 5. Terminal Block Screws
- 6. Left Terminal Block (Green)
- 7. Right Terminal Block (Black)
- 8. Ground Screw

- 9. Sensor Connector
- 10. Cover Locking Screw
- 11. Enclosure
- 12. Sensor

Figure 33 - Kayden CLASSIC Exploded View

1. Cover

In accordance with CSA and local codes, the cover must be properly installed at all times. The threads of the cover should be lightly coated with a lubricating compound to prevent seizing, freezing and corrosion. Spray lubricants are not recommended.

2. Process and Conduit Connections

- In accordance with CSA and local codes all power and communication wiring should be enclosed either
 in conduit or an approved jacketed cable. Ensure that the electrical connection made at the enclosure of
 the CLASSIC 800 meets all codes and requirements.
- As described in detail in Section 2 "Installation Guidelines", ensure that the sensor is installed with the proper orientation, to the proper depth, and coat threads with a thin layer of thread tape or sealant/ lubricant.
- Most Fault conditions and reported "failures" are actually caused by loose, broken or improper electrical
 connections. Ensure that the connections for the sensor, input power and relay output are correct and
 secure.

3. Sensing Elements

The alloy (Stainless Steel, Titanium, Hastelloy, etc.) sensors require no periodic maintenance, but any deposits or scaling should be removed from the sensor tip as necessary. Use the appropriate cleaning device or material relative to your process (example: cloth, brush, wire brush, steel wool, sandpaper, water, detergent, compatible solvents to the sensor material, etc.).

Notes: As described in detail in Section 2 "Installation Guidelines", proper physical installation of the sensor is critical to the operation of the switch/transmitter in terms of sensitivity and response time.

Because sediment will collect at the bottom of any vessel, and entrained gases will always collect at the top of any vessel, ensure sensing tip is inserted to a point where it will be constantly and fully exposed to the desired process media. Avoid locations where sediment may accumulate and eventually isolate the sensing tip from the process.

4. Electronics Module

- If it is necessary to remove the Electronics Module, appropriate ESD (electrostatic discharge) precautions must be observed, including handling the module after removal. Refer to Sub-section B "Remove the Electronics Module" on page 14.
- Store Electronics Modules in a clean and dry environment between -30°C and +60°C (-34.5°F and 140°F).

5. Adjustment & "Calibration"

The CLASSIC 800 is a digital flow, level, interface and temperature switch/transmitter and is built to require minimal maintenance and no calibration beyond proper installation and setup.

- The Kayden Electronics Modules are completely digital and have no moving parts or mechanical trim pots that could be effected by vibration or high unit cycles.
- The heater is a separate element from the sensors and is itself directly controlled by the microprocessor.

Therefore, once properly setup, the CLASSIC 800 will be as stable and repeatable as the process in which it is installed. For instance, should the application change from Flow to Level or the media change from Hydrocarbon to Water-based, or the Flow Rate increases or decreases significantly, it may be necessary to check and/or change the setup parameters (Range, Heater Power, Set Point).

6. Use Kayden RCM Software to Document Preventative Maintenance

One feature of the Kayden RCM Software* is the Configuration function which automatically stores all setup information and displays it on the Configuration screen within the software whenever the CLASSIC 800 is connected to a PC. This information may be named, stored and emailed as a file to preserve all operation setup parameters.

During maintenance turnaround, RCM Software can be used to record and save the current configuration as a file.

The Kayden RCM Software is available upon request, at no charge on a USB Drive, when a new CLASSIC+ 800 is purchased. Additional copies may be downloaded at no charge from kayden.com. In addition to the software you will need a suitable RS-485 communication adapter and cable. These can be ordered online at kayden.com.

7

Troubleshooting

Figure 34 - Display Panel Indicators

- 1. Run Mode: Flashing LED indicates normal operation.
- 2. Relay 1, Relay 2: Solid LED indicates energized relay contact.
- 3. Set Point 1, Set Point 2: Solid when displaying the associated set point. (e.g. press and hold 1.) Blinking LED when a set point has been passed but relay response is delayed by an active timer
- 4. Bypass: Indicates that the Start-up Bypass Timer feature is currently enabled.
- **5. Fault**: Indicates that the switch/transmitter is in Fault Mode when solid or Fault Recovery Mode when blinking. (See Fault Recovery Timer.)
- 6. Thermal Signal Bar Graph: Displays the Thermal Signal (rate of Thermal Dispersion by default) which represents the process condition (Flow, Level) as determined by the setup. Other values may be displayed depending on mode.
- 7. RUN: In RUN Mode pushing the RUN button changes the display from process condition to the Node Address and the Firmware revision. In Setup Mode pushing the RUN button returns the switch/transmitter to RUN Mode.
- 8. SET: Places the unit in Setup Mode unless locked by the Kayden RCM Software.
- **9. Left Arrow**: In Setup Mode the Left Arrow reduces (moves the value to the left or towards 0). In RUN Mode pushing and holding the Left Arrow button will display the Unscaled Bar Graph View.
- 10. 1, 2: Pushing and holding 1 or 2 will display Set Point 1 or Set Point 2 accordingly as programmed.
- 11. Pushing RUN + LEFT ARROW + RIGHT ARROW will reset the CLASSIC to factory settings. Refer to Configuration Flow Chart for Factory Default values.

KAYDEN Troubleshooting

1. LED Fault Indicator

The CLASSIC 800 is designed so that any error condition will be immediately detected and displayed as a FAULT condition on the Display Panel.

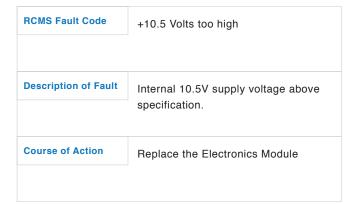
- The diagnostic circuit continuously monitors the operation of the heater, sensor elements, connecting pathways and all aspects of the Electronics Module.
- When in FAULT MODE:
 - Both relays will de-energize and remain de-energized
 - The 4-20mA signal will output high or low
 - See LED Fault Code section, for a visual list of diagnostic faults displayed on bar graph
- The FAULT remains on, until the problem is corrected. Once fault is corrected, the fault light will turn off, but only after a 300 second time delay to ensure fault does not return intermittently. Time delay is adjustable through the Kayden RCM software.
- The 4-20 mA output can be programmed to revert to a value of either 3.0 mA or 21 mA to indicate FAULT mode. For more information see Section 2 "Installation Guidelines, View or Adjust the 4-20 mA Fault Mode Configuration".
- · All FAULT Codes are automatically recorded in the EVENT LOG. The EVENT LOG may be viewed in the Kayden RCM Software.
- If a sensor fault has been corrected (such as correcting faulty wiring), pressing SET and then RUN will cause the CLASSIC to resume Run mode immediately.

2. LED Fault Codes

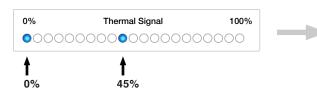
In the event a FAULT occurs, the CLASSIC enters Fault Mode and the Fault LED on the Display Panel is turned on. In Fault Mode, the LED Bar Graph cycles every 7 seconds between showing the Fault Code, and showing the Software Version and Modbus Node Address.

Fault Code Software Version / Modbus Node Address Run Mode o Run Mode o O Relay 1 O Relay 1 Q Relay 2 Bypass o O Relay 2 Bypass o Fault Fault Setpoint 1 O Setpoint 1 O Setpoint 2 O Setpoint 2 Thermal Signal Thermal Signal •oo•oooooooooo Fault Cycle Example (Cycles every 7 seconds)

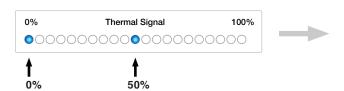
Figure 35 - Fault Cycle Display Example

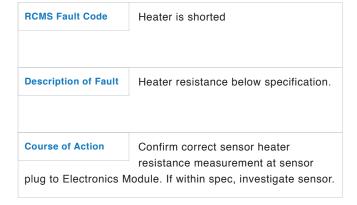

KAYDEN Troubleshooting

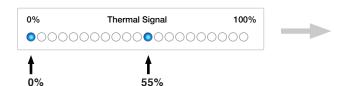
Fault Code List

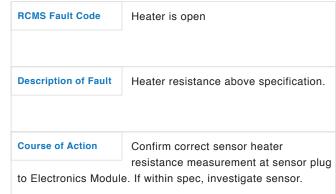

Fault Code 1

Description



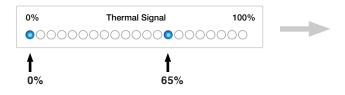

Fault Code 2


Pescription of Fault Internal 10.5V supply voltage below specification. Course of Action Confirm correct supply voltage. If correct, replace the Electronics Module.

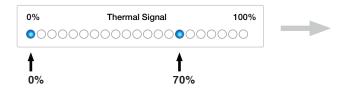

Fault Code 3

Fault Code 4

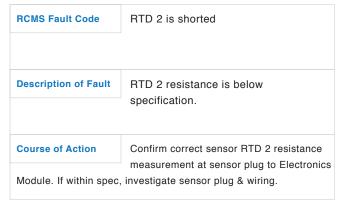
RCMS = Kayden RCM Software

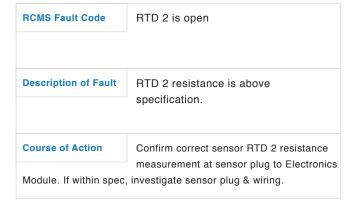


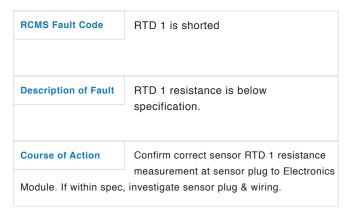
Fault Code List

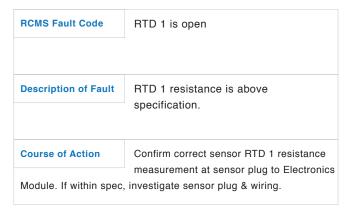

Fault Code 5

Fault Code 6


Fault Code 7




Fault Code 8



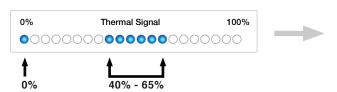
Description



RCMS = Kayden RCM Software

KAYDEN Troubleshooting

Fault Code List

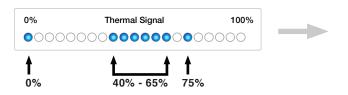

Fault Code 9

Description

Fault Code 10

RCMS Fault Code

No Fault Code in Kayden RCMS


Description of Fault

Product Identification Code does not match installed firmware.

Course of Action

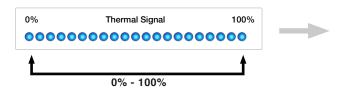
Perform FACTORY RESET. If operation not restored, replace the Electronics Module.

Fault Code 11

RCMS Fault Code

No Fault Code in Kayden RCMS

Description of Fault


Security Checksum Error, Eeprom memory fault.

Course of Action

Perform FACTORY RESET. If operation is not restored, replace Electronics Module.

Fault may occur as the result of power supply voltage below specified minimum (brown-out).

Fault Code 12

Description of Fault

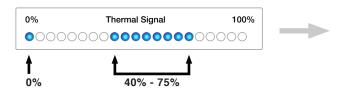
RCMS Fault Code

No Fault Code in Kayden RCMS

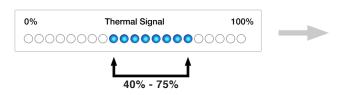
Electronics Module Failure (special case with all bargraph LEDs illuminated).

Course of Action

Perform FACTORY RESET. If operation is not restored, replace Electronics Module.


Fault may occur as the result of power supply voltage below specified minimum (brown-out).

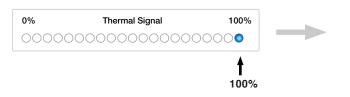
RCMS = Kayden RCM Software


KAYDEN Troubleshooting

Fault Code List

Fault Code 13

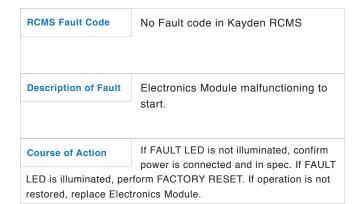
Fault Code 14

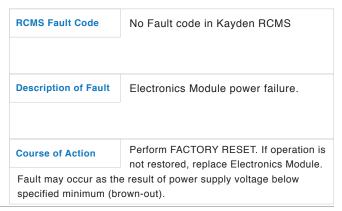


Fault Code 15

No LEDs On

Fault Code 16

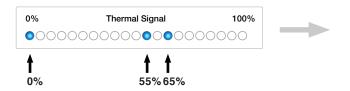


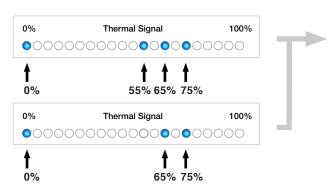

RCMS = Kayden RCM Software

Description

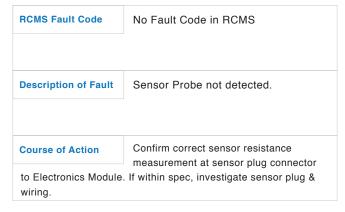
RCMS Fault Code	Self-Test Error
Description of Fault	Communication error between the module and the sensor.
Course of Action	Perform FACTORY RESET. If operation not restored replace Electronics Module.

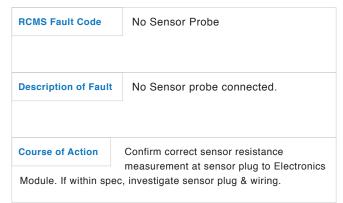
RCMS Fault Code	Probe Error
Description of Fault	The sensor is not connected properly or has a bad connection.
Course of Action	Confirm correct sensor resistance measurement at sensor plug connector
to Electronics Module wiring.	. If within spec, investigate sensor plug &




KAYDEN | Troubleshooting

Fault Code List


Fault Code 17



Fault Code 18

Description

KAYDEN Troubleshooting

3. Fault Check List

A Fault is typically the result of:

- Faulty Electronics Module.
- Faulty sensor, or sensor connector.
- Faulty wiring of the CLASSIC terminal blocks.
- Faulty remote wiring (in the case of a remote electronics installation).
- Faulty external wiring.

If a Fault occurs:

- Check the power source and wiring terminations.
- Check for damaged or shorted wiring.
- Check the Electronics Module for correct insertion.
- Check the Sensor cable is correctly plugged into the Electronics Module.
- Check the Sensor has not been damaged.
- Check the Sensor resistances.

4. Restore Operation after a Fault

Options for clearing a Fault:

- 1. Press "SET" button once, then press "RUN" button once.
 - If the unit is in FAULT mode, but the fault has been addressed, to clear the remaining FAULT timer press SET followed by RUN. The unit will then be in RUN mode.
 - This should clear any short term faults, such as faulty wiring that is now corrected.
 - This does not affect the stored configuration settings.

2. Power Cycle the Unit.

- Power cycling the CLASSIC Module will reboot the microprocessor and clear the FAULT timer as long as no persistent faults are present.
- This does not affect the stored configuration settings.
- This should clear a fault condition due to intermittent power or spikes which caused the microprocessor to start up incorrectly.

3. Click the Re-boot button in RCM software.

- Clicking the reboot button in RCM Software is equivalent to performing a power cycle.
- This does not affect the stored configuration settings.

4. Perform a "Factory Reset".

- Performing a Factory Reset restores the configuration to the original factory settings.
- May restore operation if the CLASSIC configuration memory has been corrupted e.g. due to intermittent or faulty power.
- Warning: The current configuration will be lost.
- It is recommended you contact Kayden Technical Support before performing a Factory Reset.

5. How to Perform a Factory Reset

Note: You may wish to record the current configuration before performing a Factory Reset (see table Section 7). You may also save and restore the configuration using Kayden RCMS (see Section 6 RCMS).

To reset the CLASSIC to factory default settings press the following 3 buttons:

- RUN + LEFT ARROW + RIGHT ARROW simultaneously until all LEDs flash or run back and forth.
- A successful reset will be indicated by five consecutives flashes of all LEDs followed by a pause and two more flashes.
- Warning: All previous configuration changes will be lost and the unit will be returned to it's factory defaults.
- A Factory Reset should not be performed without first consulting Kayden Technical Support.
- Factory Default Settings are shown in the Configuration Flow Chart.

6. How to Check the Sensor

- An Ohmmeter can be used to check that the RTD's and Heater resistances are within proper tolerances, and for any shorts.
- See Molex sensor plug diagram and wire chart (Fig. 29) for correct resistance between wires, at 20°C. If
 the sensor is still in the process at a different temperature, consult an IEC 60751 1000 Ohm Platinum RTD
 temperature resistance chart for the correct resistance value.
- If the sensor resistances are not correct, consult Kayden Technical Support for guidance.

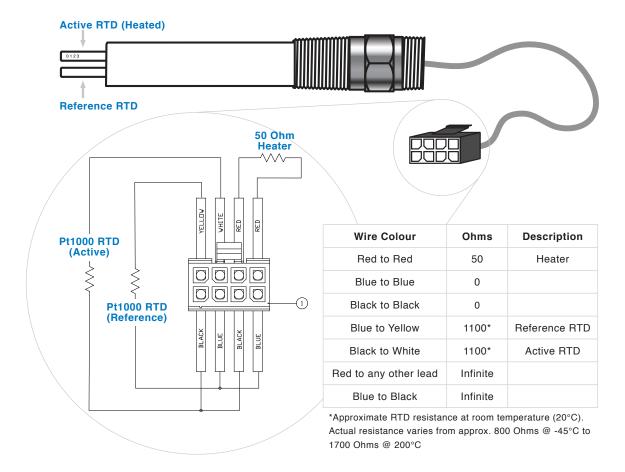


Figure 36 - Checking Sensor Resistances

KAYDEN Troubleshooting

7. Return of Material

To expedite the return process, call Kayden in Canada at +1 403 253-1423. You will be asked for product model and serial numbers, and be provided an RMA (Return Material Authorization) number.

8. Hazardous Materials

Kayden does not accept the return of Products that are contaminated with any hazardous material. It is solely the Customers responsibility to ensure any and all items returned to Kayden have been thoroughly and completely decontaminated.

9. Service, Technical Support & Contact Information

Kayden provides full in-house technical support 8 a.m. to 5 p.m. MST (Mountain Standard Time), Monday through Friday (except holidays).

> Web kayden.com

E-mail info@kayden.com

Mail Kayden Instruments

3364-14th Avenue S.E.

Calgary, Alberta, Canada T2Z 3V6

Your Local Distributor To locate your local Distributor please visit kayden.com. 8

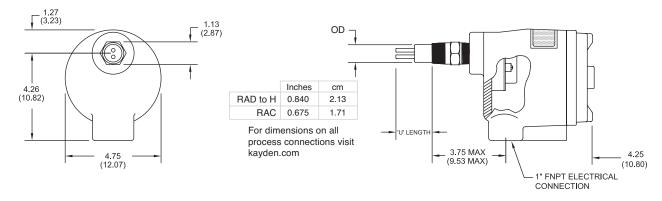
Glossary

Active RTD	The active RTD detects and outputs a signal to the Electronics Module which is proportionate to the process media temperature plus the heat added by the heater.	
Analog Output	The CLASSIC provides a standard 4-20 mA current loop analog output. The output can be configured for Forward or Reverse operation (either rises as thermal signal increases or falls as thermal signal increases). The output value in the case of hardware failure (either Fault Mode, or offline during configuration) can be configured to 3 mA or 21 mA as per NAMUR NE 43.	
Brownout	Supply power voltage has descended below the specified minimum requirement and recovered without being considered a power failure (or a power cycle). Correct operation is not guaranteed.	
Bypass	Indicates the unit is in "Start-up Bypass Mode", which forces both relays to be energized for the duration of the Start-up Bypass Timer.	
Current	Refers to the presence or absence of current flow in the 4-20 mA current loop analog output. RCMS provides a loop "Current" indicator showing if there is current flowing in the loop, or if the loop circuit is broken (also available for reading via a Modbus register, refer to the CLASSIC Modbus specification for details).	
Cycle Power	The CLASSIC re-starts operation, the state (e.g. Fault State) is reset, the CLASSIC performs a self-test and enters RUN mode if no fault conditions are present.	
Delay	The CLASSIC includes a number of delay timers to fine-tune operation and relay actuation. These options are configurable using RCMS or by accessing Modbus registers (refer to the CLASSIC Modbus specification for details).	
	The Bypass Delay Timer sets an initial period to energize the relays before using the configured set points. Setting a bypass delay can be useful in applications such as a low flow alarm pump control when there is no process flow present when the CLASSIC starts up. Setting a Bypass Delay time allows the CLASSIC to start the pump and establish process flow before monitoring the process flow.	
	OFF to ON and ON to OFF Delay Timers allow fine-tuning of relay actuation for situations where there is process surge.	
Factory Re-Set	Restores default configuration (refer to Configuration Menu tree diagram for default configuration parameter values) and clears the Fault log. The CLASSIC re-starts operation as if power was cycled (see Cycle Power).	
Fault	Indicates a self-test error (call Technical Support for further information).	
Fault Log	The CLASSIC maintains a list of recent fault events. The fault events can be displayed using RCMS or by accessing Modbus registers (refer to the CLASSIC Modbus specification for details).	
Firmware	The internal software of a CLASSIC and is associated with a version identifier.	

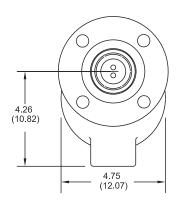
Heater	The part of the sensing element that heats the active RTD.
Heater Power	The actual power used to heat the active RTD. The amount of power is configurable by the operator (see Heater Setting), also the heater power is automatically reduced by the SmartHeater algorithm when the thermal signal falls to 0%.
Heater Setting	The assigned power supplied to the heater in normal operations. The Kayden CLASSIC incorporates an "Intelligent Constant Power" or "SmartHeater" algorithm for heater control. The heater power is automatically adjusted by the CLASSIC firmware when the thermal signal is outside of the LED Range for faster response times.
Interface	The point where two different processes meet (as in oil & water).
LED	Light Emitting Diode
Local Enclosure	The enclosure attached to the sensing element. (Normally contains the Electronics Module).
Lock (Front Panel)	The CLASSIC Front Panel "SET" button can be locked to prevent accidentally taking the CLASSIC offline or mis-configuring. Locking and Unlocking can be performed using the Kayden RCM Software or by accessing the appropriate Modbus register (refer to the CLASSIC Modbus specification for details). Performing a Factory Reset will deactivate the lock via the front panel.
LRV	The LRV (Lower Range Value) is the lowest unscaled Thermal Signal that the (scaled) Bar Graph and 4-20 Analog Output will indicate.
Mode (of Operation)	A CLASSIC can be operating in one of four modes:
	Run - the normal operating condition, the Run Mode LED is blinking once per second.
	Manual - the CLASSIC is in manual configuration mode, activated by the SET button. The RUN LED is OFF, the CLASSIC is off-line and the relays are held in their current state. The status LED that is illuminated indicates the specific configuration state.
	Fault - the CLASSIC built-in-self-test has detected a fault. The Fault LED is illuminated (either blinking or on continuously), the Run Mode LED is off, the CLASSIC is offline and relays are deactivated. Refer to the error code displayed on the bar graph for troubleshooting.
	Reset - the CLASSIC is in the process of restarting (the Run Mode LED is off and the thermal bargraph LEDs rapidly sweep back and forth).
Model	The model name of a CLASSIC Series device (e.g. "CLASSIC 800+").
Mounting Base Plate	Connection for CLASSIC 800 series Electronics Module and Terminal Wiring Assembly.
Process Temperature	The Process Temperature is the temperature of the Reference RTD in the CLASSIC sensor. The CLASSIC can be configured to use temperature setpoints instead of thermal signal setpoints to control relay actuation (relays are individually configurable).
Push "Set" then "Run" buttons	Workaround to immediately enter RUN mode from FAULT mode without waiting for a return to Run Mode from Fault Mode once the delay timer has expired. If a fault condition exists, the CLASSIC will immediately re-enter FAULT mode.

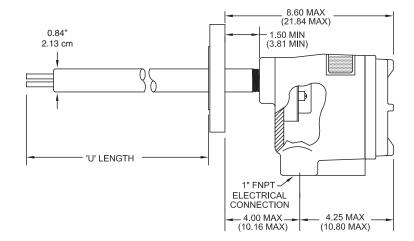
Reference RTD	The Reference RTD detects and outputs a signal to the Electronics Module which is proportionate to the process media temperature.	
Relay 1	Front panel LED indicating when the Relay 1 coil is energized.	
Relay 2	Front panel LED indicating when the Relay 2 coil is energized.	
Reboot	"Rebooting" is a computer term to mean restarting the computer. In RCMS, the Reboot button causes the CLASSIC to re-start operation as if power was cycled (see Cycle Power, and refer to Section 6 RCMS for RCMS operation).	
Remote Enclosure	Enclosure for the Electronics Module. Used when the Electronics Module must be located away from the sensing element due to heat, vibration, lack of visibility, etc.	
RCM, RCMS	Kayden Remote Control & Monitoring Software provides a graphical computer interface for the CLASSIC series.	
RTD	Resistance Temperature Detector; a sensor whose resistance varies with temperature changes.	
Run Mode	Indicates normal operation when flashing.	
Serial Number	A unique factory assigned number to each CLASSIC.	
Set Point 1	The Thermal Signal or Temperature value which determines the actuation of Relay 1.	
	To view the value of Set Point 1, press and hold the "1" button while in Run mode, or press the SET button sufficient times to View or Adjust Set Point 1 (the Set Point 1 LED will be ON).	
Set Point 2	The Thermal Signal or Temperature value which determines the actuation of Relay 2.	
	To view the value of Set Point 2, press and hold the "2" button while in Run mode, or press the SET button sufficient times to View or Adjust Set Point 2 (the Set Point 2 LED will be ON).	
Smart Heater	The "Smart Heater" reduces the heater power from from the user setting when the Thermal Signal falls to zero to prevent a "Thermal Offset". The original heater power is restored when the Thermal Signal increases.	
Thermal Offset	Thermal offset is the difference in temperature between the Active RTD and the Reference RTD due to thermal convection.	
Thermal Signal	The amount of thermal energy from the Active RTD dissipated by the process, calculated as the temperature difference between the Active and Reference RTDs and expressed as a percentage.	
Thermal Signal - Unscaled	The maximum displayable thermal signal range with LRV = 0% and URV = 100%. Pressing the Right Arrow on the CLASSIC front panel will show the unscaled thermal signal when in RUN mode.	

Thermal Signal - Scaled	The thermal signal scaled according to the user configured LRV and URV.
Unit Data	Refers to CLASSIC Model, Tag, Serial Number and Firmware version. Also the Unit Data group in Kayden RCMS.
URV	The URV (Upper Range Value) is the highest unscaled Thermal Signal that the (scaled) Bar Graph and 4-20 Analog Output will indicate.



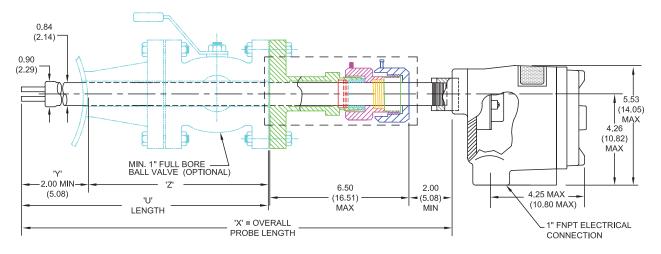
Outline Dimensional Drawings

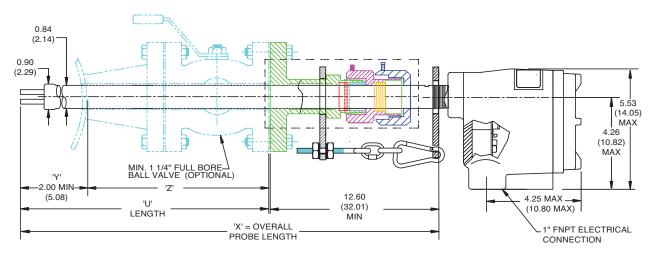

CLASSIC® 810 & 812


Inches (cm)

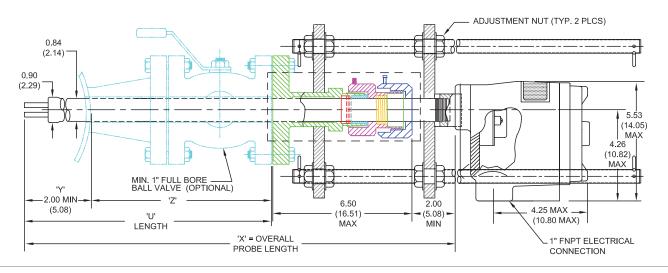
CLASSIC® 810 Threaded

CLASSIC® 812 Flanged

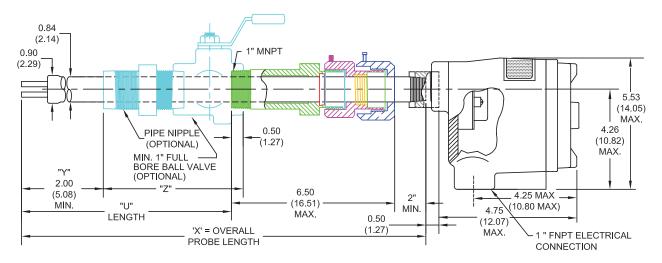




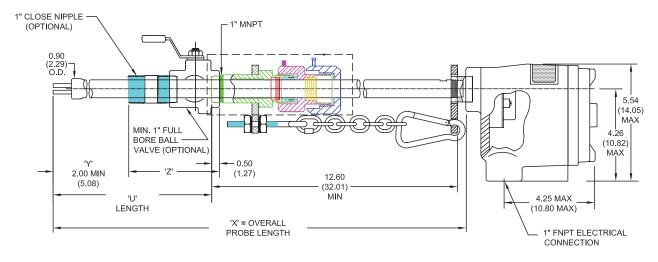
Inches (cm)


CLASSIC® 814 Retractable Packing Gland Flanged - to 50 psi

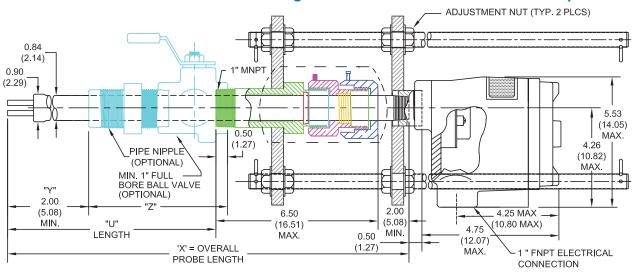
CLASSIC® 814 Retractable Packing Gland Flanged - 1" MNPT - c/w Retaining Chain - to 125 psi



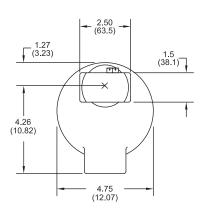
CLASSIC® 814 Retractable Packing Gland Flanged - to 275 psi

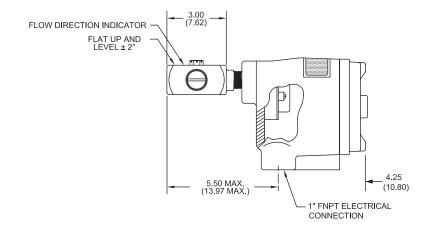


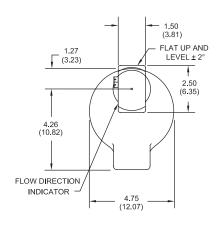
Inches (cm)

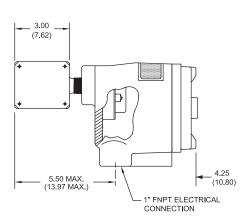

CLASSIC® 816 Retractable Packing Gland Threaded - 1" MNPT - to 50 psi

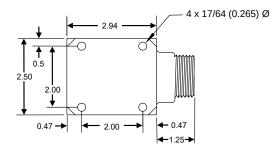
CLASSIC® 816 Retractable Packing Gland Threaded -1" MNPT - c/w Retaining Chain - to 125 psi


CLASSIC® 816 Retractable Packing Gland Threaded - 1" MNPT - to 500 psi

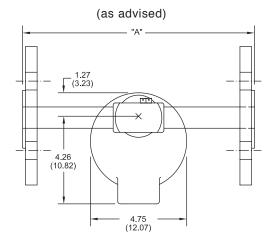


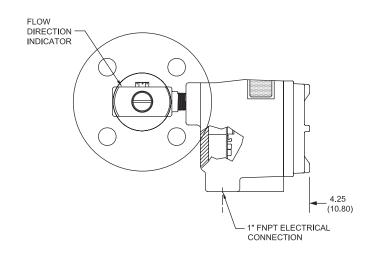

Inches (cm)


CLASSIC® 830 InLine Threaded - Horizontal

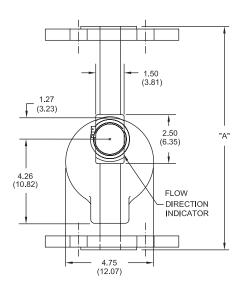


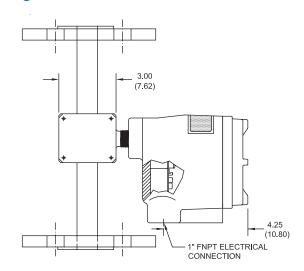
CLASSIC® 830 InLine Threaded - Vertical



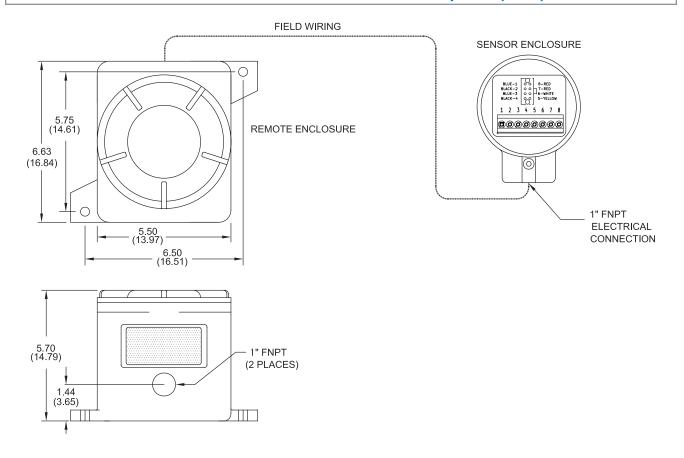


CLASSIC® 830 Detail - Mounting Holes


CLASSIC® 832 InLine Flanged - Horizontal



Inches (cm)


CLASSIC® 832 InLine Flanged - Vertical

Remote Electronics Enclosure - Flameproof (CSA)

Note: Suitable for one (1) Electronics Module.

Note: For detailed drawings of all products visit kayden.com

Model Number Legends

To configure a Kayden CLASSIC please visit kayden.com or your Kayden catalog. We have provided the following legends for configuring products. We have also provided Product Configurators on kayden.com for added ease of use.

Model Number Legends are available for the following CLASSIC 800 Flameproof Models

CLASSIC 810 Threaded

Insertion Style - 1/2", 3/4", 1", 1-1/4", 1-1/2" & 2" MNPT

CLASSIC 812 Flanged

Insertion Style - 1" ANSI 150 through 10" ANSI 900 Flanges

CLASSIC 814 Flanged Retractable Packing Gland

Insertion Style - 1-1/2" through 10" ANSI 150 Flanges

CLASSIC 816 Threaded Retractable Packing Gland

Insertion Style - 1" MNPT

CLASSIC 830 Threaded

InLine Style - 3/4" FNPT

CLASSIC 832 Flanged

• InLine Style - 3/4" ANSI 150 through 10" ANSI 900 Flanges

KAYDEN CLASSIC® 810 Threaded

810	CODE	Senso	or Type									
	R				8°F to	+392°F)	Conti	าแดนร S	ervice			Go (111)
				or Mate		1332 1)	Contin	14045 5	CIVICC			
		Α		16L Sta		Steel						
		X		um Gr. 2								
		Т		lloy C-2								
						nection	- MNI	РТ				Flow Level Interfere 9 Temperature
			С	1/2"								Flow, Level, Interface & Temperature Switch & Transmitter
			D	3/4"								
			Е	1"								
			F	1-1/4"								
			G	1-1/2"								
			н	2"								
				CODE	Inser	tion 'U'	Lengt	:hs				
				0012	1.2"	(3.0 c	cm)					
				0020	2"	(5.0 (cm)					
				0030	3"	(7.5 c	cm)		Custor	n 'U' Le	nathe	
				0040	4"	(10.1	cm)				_	- 305 cm)
				0060	6"	(15.2	cm)					0 cm) increments.
				0090	9"	(23 c	m)		, tvana	JIC 111 1	/ 2 (1.	o em) merements:
				0120	12"	(30 c	m)					
				0180	18"	(46 c	m)					
									ligits pr	eceded	by an	'I' (i.e. 3.5" 'U' = I0035) (Use 'M' for cm)
						Input						
					С			nd 115-	230 VA	C, 50 to	60 Hz	:
						Electro						
				•				or Conti				
											oabus	via RS-485. 4-20 mA current loop.
		•		•			CODE 1	Local			um	
									proof -			Enclosure
								В		Cover -		
								G				lameproof
									CODE			ctronics Enclosure & Cover
									0A		equired	
									1G		•	over - Flameproof
												cy Approvals
										1	_	(UL Standards)
										3		(UL Standards) & CRN
											-	Language
											E	English
810	R	Α	D	0020	С		1	G	0A	1	Е	
					-		-	_		_		

© Kayden Instruments All rights reserved. Contents subject to change without notice. Please refer to kayden.com for current specifications and configurations.

Model Number Legend DOC#: ML-810-006

ML-810-006-[004]

812	CODE	Sens	ensor Type										_								
	R	-55°C	to +2	00°C (-58°F t	to +39	2°F) C	ontinu	ous Se	rvice			(in 1111)								
		CODE	Sens	or Ma	terial														=		
		Α	316/3	316L S	tainles	s Stee	1														
		X	Titan	ium G	r. 2									1							
		т	Haste	elloy C	-276																
			CODE	Pro	cess C	onnec	tion -	Flang	е Туре	2			Flow, Level, Interface & Temperature								
			Α	Rais	ed Fac	е										a & Tra					
			В	B RTJ - Ring Type Joint																	
		CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI		
			1"		1-1/2"		2"		3"		4"		5"		6"		8"		10"		
		121	150	131	150	141	150	151	150	161	150	171	150	181	150	191	-	201	-		
		122	300	132	300	142	300	152	300	162	300	172	300	182	-	192	-	202	-		
		123	600	133	600	143	600	153	600	163	600	173	-	183	-	193	-	203	-		
		124	900	134	900	144	900	154	900	164	900	174	-	184	-	194	-	204	-		
					COD	E Fla	Flange Material														
		•		•	Α	31	6/3161	Stain	Stainless Steel X Titanium Gr. 2												
		•		•	Т	На	stelloy	C-276	2-276												
						СО	DE I	nsertio	sertion 'U' Lengths 2.5" - 120" 6.4 cm - 305 cm in 1/2" 1.0 cm increments.												
		•		•		IXX	(XX C	Custom 'U' Lengths: Use 4 digits preceded by an 'I' (i.e. 3.5" 'U' = I0035)													
							(,	M' = cı	m)												
									-	Power											
										/DC and	d 115-	230 VA	C, 50 t	:o 60 F	lz						
								. E	lectro	nics											
										ocesso											
								. Т						Modbu	ıs via R	S-485.	4-20 m	nA curre	ent loop.		
											Flameproof - Aluminum										
												Cove				sure					
		•		•					•		В		Cover		•						
		•		•					•		G				Flame		-l	- 0 -			
		•		•					•							ics En	closur	e & Co	over		
		•		•					•			0A	Not Required								
		•		•					•			1G	Glass Lens Cover - Flameproof								
		•											CODE Agency Approvals								
		•											1 cCSA _{us} (UL Standards)								
	•	•											cCSA _{us} (UL Standards) & CRN CODE Language								
													E English								
04.5							225				-				Liigii	511					
812	R	Α	Α	131	L A	100	035	С		1	G	0A	1	Е							

© Kayden Instruments All rights reserved. Contents subject to change without notice. Please refer to kayden.com for current specifications and configurations.

Model Number Legend DOC#: ML-812-006

ML-812-006-[004]

KAYDEN CLASSIC® 814 Flanged Retractable Packing Gland

814	CODE	Senso	r Type																	
	R	-55°C	to +16	0°C [-	58°F to	+320	PF]) Conti	inuous S	Service								(19)			
		CODE	Senso	or Mat	erial							,	(40 EIII)	The same of	.00		Name 1			
		Α	316/3	16L St	ainless	Steel							.800		- A	h	AJA T			
		X	Titaniı	um Gr.	2							•								
		т	Hastel	lloy C-2	276															
			CODE	ODE Process Connection - Flange Type									w. Lev	el, Int	erface	e & Te	mpera	ature		
			Α	Raised Face								Switch & Transmitter								
			В	RTJ -	Ring T	ype Joi	nt													
		•		CODE	ANSI	CODE	ANSI CO	DE AN	SI COD	E ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI	CODE	ANSI		
					1-1/2"		2"	3'	'	4"		5"		6"		8"		10"		
				131	150	141	150 1	51 15	0 161	150	171	150	181	150	191	150	201	150		
					CODE	Flar	ge Mate	rial												
		٠			Α	•	/316L Sta		teel	C Tita	nium G	Gr. 2								
		•		-	Т		elloy C-2													
						COD			ssembl	-										
						Т			316/31											
		•				J			c/w Ret	_						1WP 12	25 psi)			
						X			sure; 316/316L Stainless Steel (MWP 275 psi)											
									tion 'U' Lengths 2.5" - 120" 6.4 cm - 305 cm in 1/2" 1.0 cm increment											
		•				•	IXXXX		n 'U' Lei	ngths: l	Jse 4 d	igits pr	recedeo	d by an	`I' (i.e	. 3.5"	`U' = I	0035)		
		•						('M' =		D										
		•						CODE	Input		J 44E 1	220.1/4	C	- CO III	_					
	•	•	•			•	•	C	12-24		u 115-	230 VA	C, 50 t	.0 60 п.	Z					
											r Contr	ollod w	ith He	or Intor	faco T	wo SD	DT fulls	y sealed		
									relay c									y sealeu		
									·	CODE				20	11177 CG	irene i				
										1		oroof -		num						
										.				Local	Enclos	sure /				
														sor En		•				
											В	Blind	Cover -	- Flame	proof					
											G			over -		roof				
												CODE	Rem	ote Ele	ctroni	cs				
													Enclo	sure 8	& Cove	er				
												0A Not Required								
												1G Glass Lens Cover - Flameproof								
												CODE Agency Approvals								
												• cCSA _{us} (UL Standards)								
												CODE Language								
												E English								
814	R	Α	Α	131	Α	т	10035	С		1	G	0A	1	E						

© Kayden Instruments All rights reserved. Contents subject to change without notice. Please refer to kayden.com for current specifications and configurations.

Model Number Legend DOC#: ML-814-006

ML-814-006-[004]

^{*}Sensor only. The Packing Gland Assembly is available as standard in 316/316L Stainless Steel. For exotic alloys contact Kayden.

KAYDEN CLASSIC® 816 Threaded Retractable Packing Gland

816	CODE	Senso	r Type	.													
	R	-55°C	to +16	0°C [-	58°F to -	+320°F]) Con	tinuous	Service	!			-				
		CODE	Senso	or Mat	erial												
		Α	316/3	16L St	ainless S	teel											
		X	Titaniı	Titanium Gr. 2													
		Т	Hastel	loy C-	276												
			CODE	Proc	ess Con	nectio	n - MN	PT				FIC	ow, Level, Interface & Temperature				
			E	1"									Switch & Transmitter				
				CODE	Inserti	ion `Uʻ	Lengt	hs									
				Т	Low Pre	essure;	; 316/3	16L Sta	inless S	Steel (M	WP 50	psi)					
				J				_					teel (MWP 125 psi)				
				X	Medium	n Press	ure; 31	.6/316L	Stainle	ss Stee	I (MWP	500 p	si)				
					CODE			J' Leng									
		•			IXXXX					digits p	preceded by an I' (i.e. $3.5'' U' = I0035$) (Use M' for connected by an I'						
		•						Power									
		•				С			nd 115-	230 VA	0 VAC, 50 to 60 Hz						
		•						ronics									
		•		•				orocesso									
		•		•			Iwo S					s. Mo	dbus via RS-485. 4-20 mA current loop.				
		•					•			Enclos							
		•					•	1		proof -			Fuelleanne				
		•	•		•			•	В		Cover -		Enclosure				
									G				Flameproof				
													ectronics Enclosure & Cover				
										0A							
										1G		Required ss Lens Cover - Flameproof					
												ODE Agency Approvals					
											1						
											· CODE Language						
											E English						
816	R	Α	Е	т	10035	С		1	G	0A	1	Е					

© Kayden Instruments All rights reserved. Contents subject to change without notice. Please refer to kayden.com for current specifications and configurations.

Model Number Legend DOC#: ML-816-006

ML-816-006-[004]

^{*}Sensor only. The Packing Gland Assembly is available as standard in 316/316L Stainless Steel. For exotic alloys contact Kayden.

KAYDEN | CLASSIC® 830 InLine Threaded

830	CODE	Senso	or Type	•															
	R	-55°C	to +20	0°C (-5	8°F to	+392°F) Conti	nuous S	Service			15-1111							
		CODE	Senso	or Mate	rial														
		А3	316/3	16L Sta	inless S	Steel c/v	w Nicke	l Braze											
			CODE	Proce	ss Con	nectio	n - FNF	т											
			D	3/4"															
				CODE	Senso	or Asse	mbly E	ody Le	ength			Flow, Level & Temperature							
				0035	3.5" (8.8 cm)								Switc	h & Tr	ansmitter			
					CODE	Bleed	Port												
					Α	Stand	ard												
						CODE	Senso	or Mou	nting O	rienta	tion								
		•				Н	Horizo	ntal Pip	oe										
						V		al Pipe											
								ODE Injection Tubes 3/4" MNPT x 1/4" FNPT											
							0	Not Required											
							1		l; .180′										
							2			6" Bore; 316/316L Stainless Steel									
										nting Bracket Kit									
								A		Required									
								В		0° Angle Bracket with hardware for wall/stand mounting									
				•						Power									
									С		VDC ar	nd 115	-230 V	/AC, 5	0 to 60) Hz			
		•				•		•			ronics								
				•												ce. Two SPDT fully sealed			
				•				•		relay o						mA current loop.			
											1	Loca							
															ninum	Al Englacure /			
		•				•		•		•		CODE	Cove			Il Enclosure / Enclosure			
												В	Blind			neproof			
												G				- Flameproof			
												3				ectronics			
													JUDE			& Cover			
													0A	Not I	Require	ed			
												OA Not Required Glass Lens Cover - Flameproof							
											CODE Agency Approvals								
										1 cCSA _{us} (UL Standards)									
																Language			
															E	English			
830	R	А3	D	0035	Α	н	1	Α	С	3 -									
030	_ ^	73		0033	_ ~		_ •	~			_ •		UA	-					

© Kayden Instruments All rights reserved. Contents subject to change without notice. Please refer to kayden.com for current specifications and configurations.

Model Number Legend DOC#: ML-830-006

ML-830-006-[004]

KAYDEN CLASSIC® 832 InLine Flanged

022	6055	Some	or T																				
832	R		or Typ		E00E 4	to 130	20E) C	ontinu	oue Sor	nvico.													
·	К		Sens		(-58°F 1	10 +39.	2°F) C	ontinuo	ous Ser	vice			Taxable Control of the Control of th										
		A3				Ctool	o/w Ni	akal Br										3					
		. A3			tainless ess Co i		•																
		•	A		d Face	nnecti	on - Fi	lange	туре														
			В		Ring Ty	ma lai	nt							FIC		vel & ⁻ h & Tra			<u></u>				
		CODE						CODE	ANCT	CODE	ANCT	CODE	ANCT	CODE					ANCT				
		CODE	1"	CODE	1-1/2"		2"	CODE	3"	CODE	ANSI CODE ANSI CODE ANSI CODE ANSI CODE ANSI 4" 5" 6" 8" 10"												
		121	150	131		141		151	150	161	150	171	5" 6" 8" 10" 71 150 181 150 191 150 201 150										
		122	300	132	150 300	141	150 300	151	300	162	300	171	300	182		191	300	201	150 300				
		123		133		143		153								192		202					
			600		600		600		600	163	600	173	600	183			600		600				
		124	900	134	900	144 Flang	900	154	900	164	900	174	900	184	900	194	900	204	900				
		•			A		e Mate 16L Sta		Ctool														
						, -				Rody	Longt	h (Ela	ngo Es	aca to	Elang	e Face							
										-	_		_					O ('M' -	- cm)				
						LXXXX		-	_		Available in $1/2$ " (1.0 cm) increments. eg. 16.0 " = 0160 ('M' = cm) range size/rating)												
									d Port	o mang	16 3126/	racing											
							A			ed - St	andaro	1											
									1/4" Threaded - Standard CODE Sensor Orientation														
								H Horizontal															
								v	110112011001														
											Sched	ule											
									0		lule 40												
									1		lule 80		dard)										
										CODE	Input	Powe	er										
										С	-			5-230	VAC, 5	0 to 60	Hz						
												ronics											
											Microp	rocesso	r Contro	Controlled with User Interface. Two SPDT fully sea									
											relay c	ontacts	. Modbu	ıs via F	RS-485.	4-20 m	A currer	nt loop.					
												CODE	Local	Enclo	sure								
		•						•				1	Flame	proof	- Alumi	inum							
													CODE	Cove	r - For	Local	Enclos	ure /					
															Ser	sor En	closur	·e					
													В	Blind	Cover	- Flame	proof						
													G	Glass	Lens C	Cover -	Flamep	roof					
														CODE	Remo	te Ele	ctronic	cs					
															Enclo	sure &	Cove	r					
														0A	Not R	equired							
													1G Glass Lens Cover - Flameproof										
													CODE Agency Approvals										
													· cCSA _{us} (UL Standards)										
																CODE	Langu	age					
·																E	English	1					
832	R	А3	Α	131	Α	10060	A	н	0	0 C 1 G 0A 1 E													

© Kayden Instruments All rights reserved. Contents subject to change without notice. Please refer to kayden.com for current specifications and configurations.

Model Number Legend DOC#: ML-832-006

ML-832-006-[004]

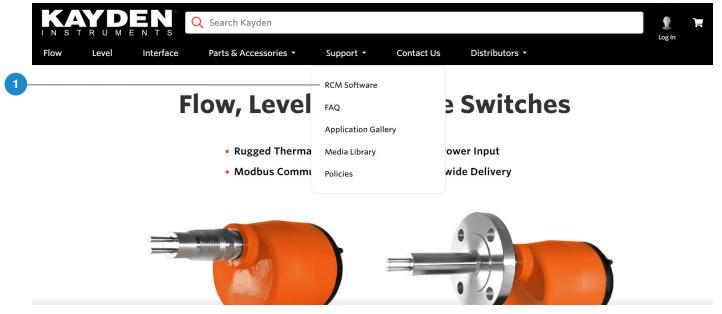
kayden.com Web Site

kayden.com is a comprehensive resource for most customer requirements.

The site offers a means to:

- Configure Products, Spare Parts and Accessories
- Compare our products to determine those best suited to your application
- View and download Product Manuals
- View and download Outline Dimensional Drawings, Wiring Diagrams & Parts Lists
- View and download Quick Setup Guides
- View and download Product Specifications and Brochures
- View our Support Section for Troubleshooting Assistance
- View our Corporate Policies (satisfaction guarantee, returns, repairs, etc.)
- Find your **Kayden Distributor**
- Download Kayden RCM Software
- View and download Approval Certificates

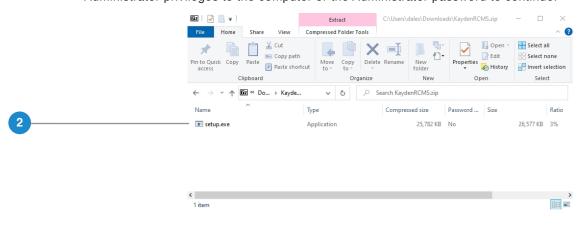
RCM Software Installation and Use

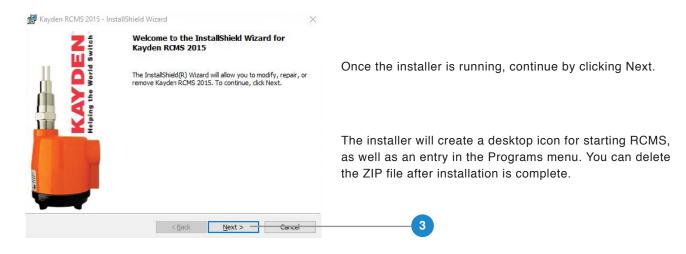

Kayden RCM (Remote Configuration and Management) Software, or simply RCMS, can be used to configure the Kayden CLASSIC, including features not accessible from the CLASSIC front panel such as delay timers and using temperature set points. RCMS can also save the configuration of a CLASSIC, which can be saved as a record or used to identically configure other CLASSICs.

RCMS is only available for computers running Microsoft Windows®

I. Install RCMS

1. Download


Download the RCMS installation ZIP file from the Kayden website.


kayden.com

2. Open

Open the ZIP file using Windows Explorer and double-click setup.exe to install RCMS. You will need Administrator privileges to the computer or the Administrator password to continue.

II. Wire RS-485 Connection from Computer to CLASSIC

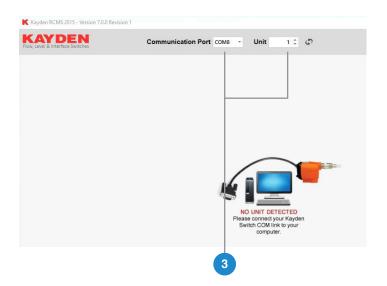
1. Connect to PC

Connect the computer with RCMS installed to a CLASSIC using a suitable RS-485 adapter (the CLASSIC communicates using single-duplex RS-485 at 9600 baud). Kayden offers both USB-to-RS-485 adapters as well as RS-232-to-RS-485 adapters.

III. RS-485 Communication Adapters and Cable

PC Port	Adapter	Cable						
DB9	Part Number: A15-321 Kayden SCA for computers with DB-9 RS-232.	A05-CC-0004 4 feet A05-CC-0008 8 feet A05-CC-0010 10 feet Contact factory for custom length.						
USB	Part Number: USB-RS485 Pigtail cable for direct connection with terminal block for optional use.	No cable required unless terminal block is used						

Start RCMS

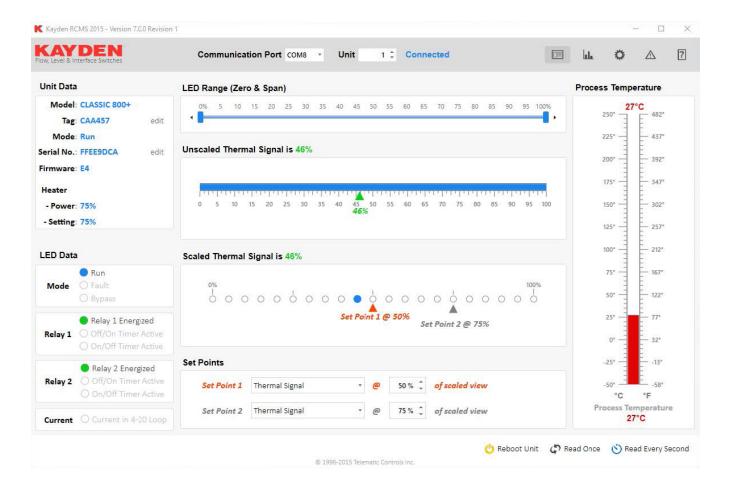

Start RCMS. RCMS must be run as Administrator; hold the Shift key then right-click on the RCMS icon and select Run as Administrator from the pop-up context menu.

Connect RCMS to the CLASSIC

After RCMS has started, you must specify the Unit number of the CLASSIC device (also called the Modbus Node Address) and the COM port used by the RS-485 Adapter.

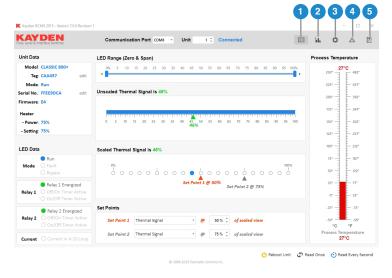
> Disk drives > Display adapters > @ DVD/CD-ROM drives

RCMS will connect immediately if the previous settings used are still valid.


The default Unit number is Unit 1, which is the CLASSIC factory default Node Address.

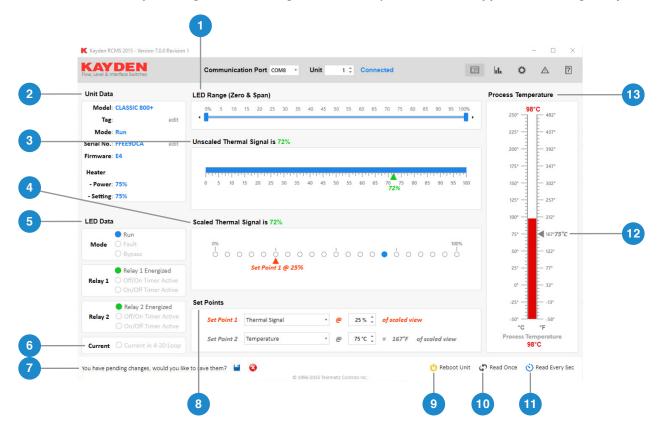
> 漏 Human Interface Devices IDE ATA/ATAPI controllers The COM port the CLASSIC is connected to can > Imaging devices Keyboards be found through Windows Device Manager. In the Mice and other pointing devices > Monitors following figure, Device Manager shows a single USB > P Network adapters Serial Port which has been assigned COM8. Portable Devices ✓ Ports (COM & LPT) Communications Port (COM1) USB Serial Port (COM8) > Print queues > Processors Security devices Software devices Sound, video and game controllers > Storage controllers KAYDEN **Click to Attempt Connection**

> After setting the Unit number and COM port, click the Refresh icon to connect to the CLASSIC.


If the connection is successful, RCMS will remember the COM port and Unit number and use them the next time it is run.

V. RCM Software Views

RCMS provides five views, selected using the icons in the upper right:


- Control Panel Shows operating status.
- Graphs Shows thermal signal or temperature trend line.
- Unit Configuration Configuration controls.
- Fault Log Lists operational and fault events, also error counters.
- Help CLASSIC Product Manual and Glossary.

V. Control Panel View

The Control Panel View displays device information, operating status, and allows some configuration. Click Read Once to update the dashboard, click Read Every Second to show changing status in real time.

The unit MUST stop reading to enter configuration mode (a STOP button appears if reading every second)

1. LED Bar Graph Range (LRV & URV)

Adjust LRV and URV by dragging pointers.

2. Unit Data

Lists Model, Tag (if configured), Serial Number, Firmware Version, Operating Mode, configured Heater Power and current Heater Power (if Smart Heater is operating, current power will be 20%).

- **Unscaled Thermal Signal**
- **Scaled Thermal Signal**
- **LED Data**

Replicates Front Panel LEDs. Shows operating mode, relay status, and analog 4-20 mA loop status.

6. 4-20 mA Current Loop Active (inactive if no loop current)

7. Save/Cancel

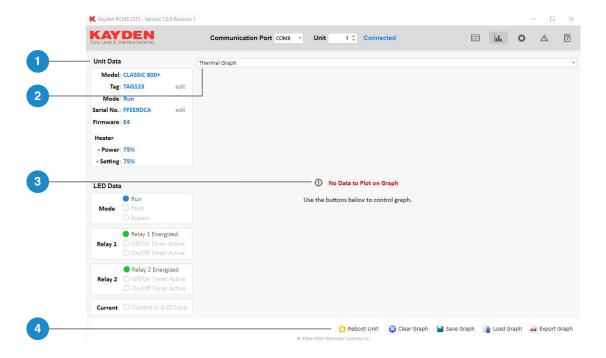
Click "Save" (Disk Icon) to save the configuration changes to the CLASSIC, or "Cancel" (X Icon) to revert to the current CLASSIC configuration.

8. Relay Set Points

Displays whether responding to Thermal Signal or Temperature. The relays can be configured when the CLASSIC is not being read continuously.

- 9. Click to Reboot CLASSIC (equivalent to cycling power, does not alter configuration)
- 10. Click to Refresh Control Panel (reads once)
- 11. Click to Continuously Update Control Panel (button changes to Stop Reading when clicked)

12. Temperature Set Point


Appears if a relay has been configured to respond to temperature. The temperature set point can be adjusted by dragging the arrow when the CLASSIC is not being read continuously.

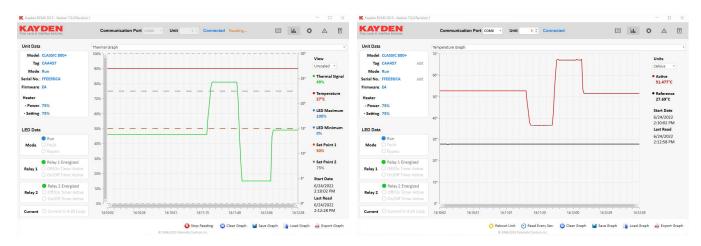
13. Process Temperature (reference RTD temperature)

VI. Graphs View

The Graphs View will initially not show any data; to start graphing the Read Every Second button must be clicked.

Unit Data & LED Data

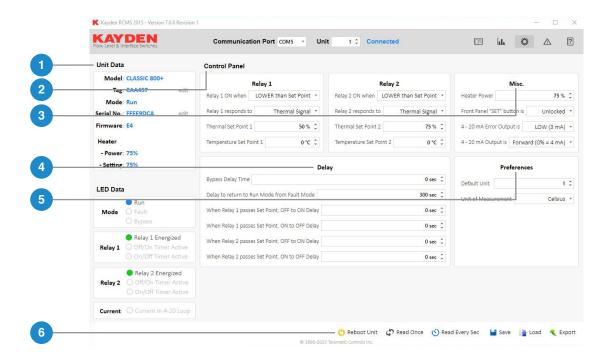
Same as in the Control Panel View.


2. Graph Selector

Selector to graph Thermal Signal or Temperature (plotting both the reference RTD and the active or heated RTD).

3. Graph Region

4. Control Buttons


Control buttons to Reboot, Read Every Second, Clear Graph, Save Graph, (to a KGR file for viewing later in RCMS), Load Graph (an existing KGR format file), and Export Graph (to a PDF document). The Read Every Second button changes to a Stop Reading button after starting reading.

VII. Unit Configuration View

The Unit Configuration View is used to configure the CLASSIC operation. In addition to configurations available using the front panel.

1. Unit Data & LED Data

Same as in the Control Panel View.

2. Control Panel

Relay 1 and 2 Actuation Level, Mode (Thermal Signal or Temperature Control), and Set Point configuration.

3. Misc. Controls

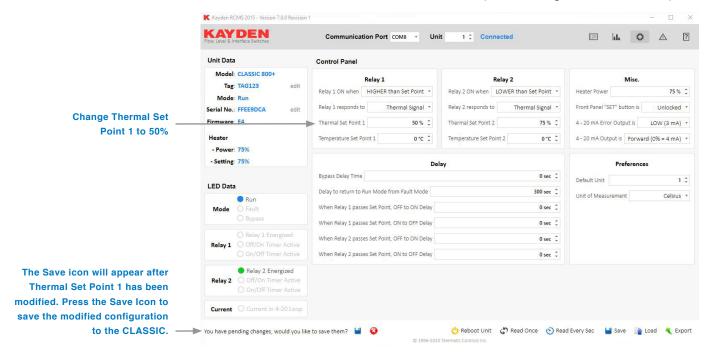
Default Heater Power, Lock Front Panel, Analog 4-20 mA Output Direction, and Analog 4-20 mA Error Condition.

4. Delay Timers

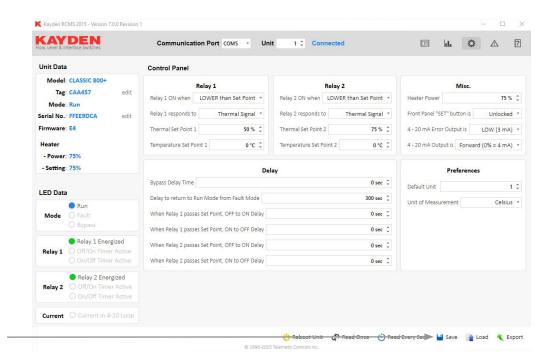
5. Preferences

Default unit and Unit of Measurement to show. These settings apply ONLY to RCMS and are NOT CLASSIC configurations.

6. Control Buttons

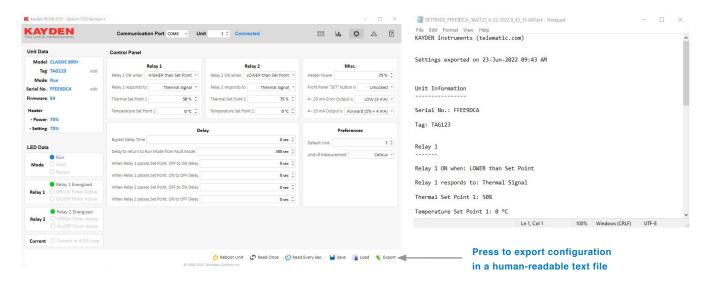

Control buttons to Reboot Unit, Read Once, Read Every Second, Save (configuration to a KST file), Load (configuration from a KST file) and Export (save configuration to a text file).

RCMS can be used to save a custom CLASSIC configuration, as a record of the CLASSIC configuration, to revert changes in the future should it be necessary, or to configure multiple CLASSIC devices identically.

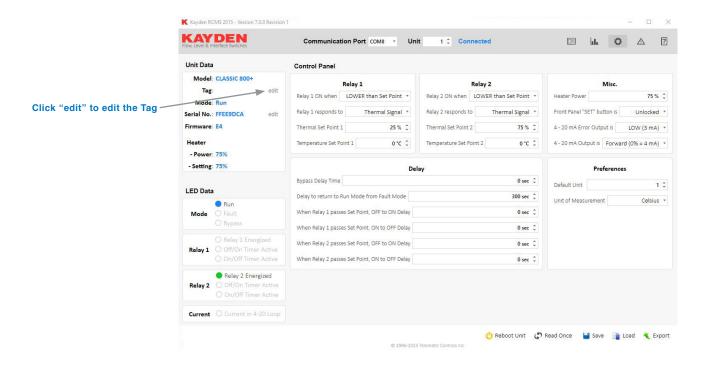


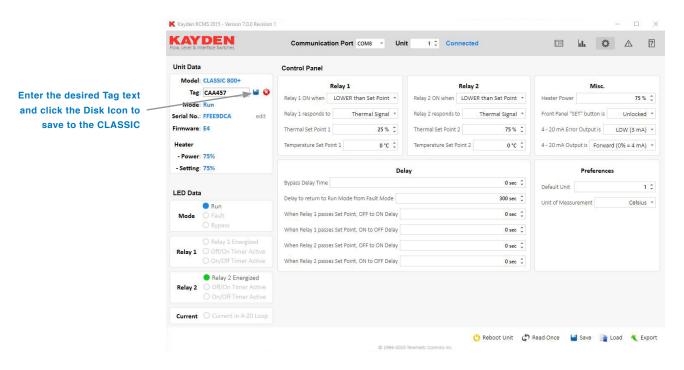
VIII. Save CLASSIC Configuration

- Launch RCMS, connect to the CLASSIC, and access the Unit Configuration view in RCMS (click the gear icon in the upper right, or use shortcut Ctrl-J).
- 2. If the CLASSIC has not been configured yet, first edit the configuration and save the changes to the CLASSIC. For example, we will change the default Relay 1 Thermal Setpoint from 25% to 50%.
- 3. Save the CLASSIC configuration to a file by clicking the Save icon in RCMS. The default filename will be SerialNumber_TAG_Date_Time.kst, but this can be edited if desired (do not change the kst extension).



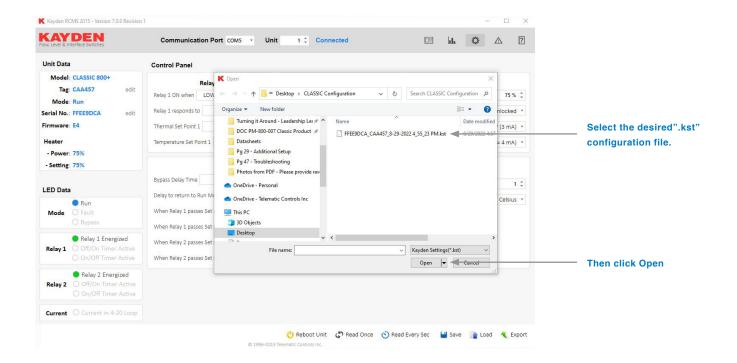
RCMS can also generate a human readable text file listing the configuration parameters as well as the Serial Number and Tag (the Serial Number and Tag are identification, and are not included in the configuration).


Press to save configuration in a format that can be loaded and saved to a CLASSIC

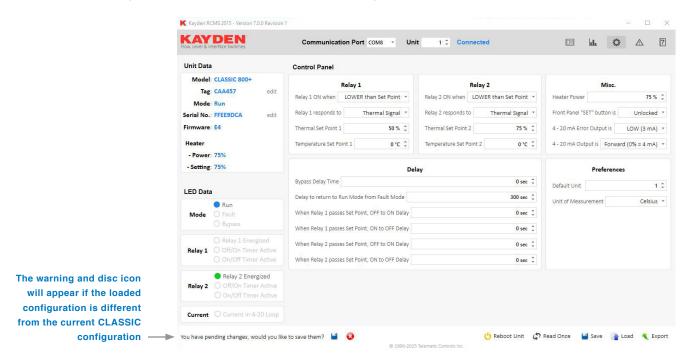


IX. Load CLASSIC Configuration

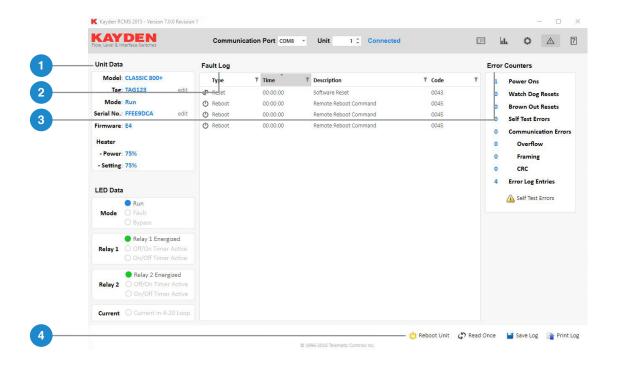

If the CLASSIC is a new device and you configure the Tag on your CLASSIC devices, set the Tag first, before loading a configuration.



Load the configuration into RCMS.


Click the Load Icon to select a configuration file to load

3. Save the configuration to the CLASSIC. If the loaded configuration is different from the CLASSIC's current configuration, the change warning and disk icon will appear. Click the disk icon to save the configuration to the CLASSIC.


After saving, the CLASSIC restarts with the new configuration.

X. Fault Log View

The Fault Log View shows the stored Fault Log events, and value of the Error Counters.

Unit Data & LED Data 1.

Same as in the Dashboard View.

2. Fault Log

Fault Log Event List (not necessarily faults).

3. Error Counters

- a. Power Ons: Successful startup after applying or cycling power
- b. Watch Dog Resets: Internal software failure and automatic restart
- c. Brown Out Resets: Power source fell below the minimum acceptable voltage but recovered before complete failure (complete failure is a Power On)
- d. Self Test Errors: Open or short-circuit in the sensor circuitry or wiring, or internal heater power supply failure
- e. Communication Errors: Modbus communication failure due to incorrect message construction, incorrect baud rate, more than one device with the same ID on the Modbus, a faulty device on the Modbus, or electrical noise on the RS-485 interface
- f. Error Log Entries: Total number of listed error log events to a maximum of 16. Older devices may show the total number of error events, although the maximum listed is 32.

4. Control Buttons

Control buttons to Reboot Unit, Read Once, Save Log (to an Excel XLS file), and Print Log (to a system printer, which can include Microsoft Print to PDF).

XI. Help

The RCMS Help provides a list of RCMS features and a digital copy of the Kayden CLASSIC Product Manual.

Notes	

Notes	

This document and other information from Kayden and its authorized distributors, provides product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current catalog located online at kayden.com.

Copyright 1994 – 2025 Telematic Controls Inc. (the Kayden Instruments line of products is manufactured by Telematic Controls Inc.). All rights reserved.

KAYDEN®, CLASSIC® and Helping the World Switch® are registered trademarks and RCM™, RCMS™, Remote Control & Monitoring Software™, SCA™ are trademarks property of Telematic Controls Inc.

Tri-Clamp® is a registered trademark of Alfa Laval Inc.

Estane® is a registered trademark of Lubrizol Corporation

Hastelloy® is a registered trademark of Haynes International, Inc.

Inconel®, Incoloy® Alloy 20, Monel® are registered trademarks of Special Metals Corporation

Modbus® is a registered trademark of Schneider Electric USA, Inc.

Thredolet[™] and Weldolet[™] are registered trademarks of Bonney Forge Corporation (WFI International).

This catalog is for informational purposes only.

The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind are made as to its accuracy, suitability for particular applications or the results to be obtained therefrom. The information is based on laboratory work with small-scale equipment and does not necessarily indicate end product performance. Because of the variations in methods, conditions and equipment used commercially in applying these products, no warranties or guarantees are made as to the suitability of the products for the application(s) disclosed. Full-scale testing and end product performance are the responsibility of the user. Kayden Instruments shall not be liable for and the customer assumes all risk and liability of any use of handling of any product beyond Kayden Instruments direct control. THE SELLER MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Nothing contained herein is to be considered as permission, recommendation, nor as an inducement to practice any patented invention without permission of the patent owner.

KAYDEN Contact Information

Ordering Information

Order Online

kayden.com Use our website to order your Kayden products. Please know that your local Authorized Distributor

is supported whether you place orders online, via telephone, or email.

Contact Us

Telephone

+1 403 253-1423

E-Mail Web

info@kayden.com kayden.com

Hours Monday - Friday 8:00 a.m. - 5:00 p.m. MST

Mailing Address 3364-114th Avenue S.E., Calgary, Alberta, Canada T2Z 3V6

Contact a Local Distributor

Distributors

Visit kayden.com to find a local Distributor near you. Distributors provide local inventory, technical support & service.

60-Day 100% Satisfaction Guarantee

Standard Products

Standard Products are eligible for the 60-Day 100% Satisfaction Guarantee. If you purchased new Standard Products, you may return them to the place of purchase up to 60 days from the date of invoice for a refund or credit of the product purchase price provided the quantity of Products does not exceed twenty-five units (nominal restocking fee apply to only those quantities exceeding twenty-five units).

Custom Products

Custom Products are not eligible for this guarantee as they are manufactured specifically to the customers' individual and unique requirements. Ship returns prepaid. Please note the refund or credit will not include any charges for special documentation, special equipment, special service, special approvals, drawings, certificates, equipment tags, set points, flow curves, x-rays, dye penetration tests, opened software, shipping or insurance shown on your invoice.

View the Return Policy in detail at kayden.com.

Visit kayden.com to view the 60-Day 100% Satisfaction Guarantee in detail.

Warranty

One (1) Year from shipment date from factory (see Terms & Conditions of Sale).

For more information about the CLASSIC Series or any of Kayden's other products, please visit kayden.com